Coal-Fired Power Plant: How to Design and Calculate Plant Footprint, Fuel, Limestone, Hauling Trucks and Storage Areas for Coal and Ash

May 16th, 2014 No Comments   Posted in clean coal technologies

Coal-Fired Power Plant: How to Design and Calculate Plant Footprint, Fuel, Limestone, Hauling Trucks and Storage Areas for Coal and Ash

Yes, your favourite energy technology expert has prepared a simple but easy-to-use power plant model to augment your project finance model to calculate the following:

1) Coal quality and quantity of coal reserves (measured, indicative, inferred, total in-situ reserves)

2) Average specification of coal reserve (heating value, ash, volatile combustible matter, fixed carbon, sulfur, moisture)

3) Ultimate analysis of coal reserve (Carbon, Hydrogen, Nitrogen, Oxygen, Sulfur) More »

Economics of a 135 MW (net) coal-fired Circulating Fluidized Bed (CFB) Thermal Power Plant

May 14th, 2014 No Comments   Posted in clean coal technologies

Economics of a 135 MW (net) coal-fired Circulating Fluidized Bed (CFB) Thermal Power Plant

Following is an annual construction model (3 years or 36 months) and a 25-year operating project finance model (30% equity, 70% debt) with a 16% p.a. equity IRR and coal cost of US$85 per tonne (metric ton or MT) with a gross heating value (GHV) of 10,000 Btu/lb,  36 months construction, 25 years commercial operation) using average annual drawdown (1/3 in year 1, 1/3 in year 2, 1/3 in year 3 construction drawdown). The CFB has an overall fuel to electricity thermal efficiency of 37.39% (92.5% boiler efficiency, 42.0% steam turbine efficiency and 96.25% mechanical clutch & electric generator efficiency). The results are as follows: More »

World Energy Technology Series 2 – ADVANCED COAL POWER GENERATION TECHNOLOGIES

October 8th, 2009 2 Comments   Posted in clean coal technologies

World Energy Technology Series 2 – ADVANCED COAL POWER GENERATION TECHNOLOGIES

Your energy technology and pricing expert is releasing issue #2 on Advanced Coal Technologies.  This series will focus on energy technologies (fossil, renewable, nuclear, storage) by giving information on the energy resource, basic principles, energy conversion technology, overnight capital cost ($/kW), operating and maintenace costs (fixed O&M $/kW/yr, variable O&M $/kWh), maintenance and overhaul schedule (to determine capacity factor and availability), outage rate and reliability, construction lead time, economic life, conversion efficiency (input energy to output power or heat or cooling), fuel heating value (gross and net BTU/lb, kJ/kg, BTU/scf, kJ/Nm3, BTU/gal, kJ/liter), fuel costs ($/MT, $/kg, $/bbl, $/liter, $/MMBTU, $/GJ) in order to arrive at its levelized price and levelized generation cost of energy. The benefits and risks of each technology is also presented. I encourage the reader to follow this series.

A complete power point presentation may also be obtained from this link to complement this article. More »

Is Advanced Clean Coal the Answer to our Global Power Problem?

Is Advanced Clean Coal Technology the Answer to our Global Power Problem?

Remaining Life of Fossil Fuels (oil, natural gas, coal)

Recent events have thrust lately renewed interest in “advanced clean coal” technologies to provide additional power generation capacity in view of dwindling and expensive oil supplies (remaining life 39 years), natural gas (61 years). World wide coal reserves are expected to last over 231 years (remaining life = reserves / extraction rate).

However, due to concerns arising from pollution (emission of sulfur as SO2, toxic ash and heavy metals) and climate change (emission of CO2 greenhouse gases), the utilization of coal for power generation has spurred researches leading to the development and commercialization of so called “advanced clean coal” technologies. More »

Advanced Coal-Burning Power Plant Technology

This file (1.03 MB) will cover the following topics:

ADVANCED COAL-BURNING POWER PLANT TECHNOLOGY

Traditional coal-fired power plant suffers from two primary drawbacks:

  • overall thermal efficiency limited
  • major source of pollution

There are strategies to reduce levels of pollution immediately in traditional plants.

However, very little can be done to raise its efficiency, being limited by thermodynamic constraints.

Efficiency of 49-50% feasible within 20 years.
Price: 42 USD