The Paradigm Shift from Nuclear Energy to Renewable Energy – the Fukushima debacle

April 16th, 2011 4 Comments   Posted in nuclear energy and power

The Paradigm Shift from Nuclear Energy to Renewable Energy – the Fukushima debacle

The recent nuclear meltdown incident in one of the 15th largest nuclear power plant in the world as a result of a sequence of events starting with an Intensity 9.0 earthquake that initiated a 10-15 meter tsunami wave within minutes (leaving little time for safe evacuation in spite of adequate tsunami warning by civil and military authorities) that engulfed as far as 10-20 kilometers inland along the flat lands of northeastern Japan, and in the process destroying buildings, roads, bridges, flinging ships inland and disabling the backup diesel generation system of the Fukushima nuclear power plant.

There are newspaper accounts that the earthquake isolated the Fukushima nuclear power plant from the grid, and with a non-operable backup diesel generation backstopped only by an 8-hour battery pack, the world was indeed very close to a China-syndrome type nuclear power plant meltdown. Only the timely use of seawater pumped using crude methods to cool the reactor core and the spent fuel pool prevented a full meltdown. Up to now, the nuclear power plant operator has not succeeded in stabilizing the cooling water system and has relied on pumping and spraying sea water over the damaged nuclear reactors and exposed spent fuel rod cooling pools, leading to leakage of hot radioactive and contaminated sea water into the sea thru the minute cracks on the reactor building’s damage floors. More »

Improving Nuclear Plant Safety – Lessons Learned from Japan Meltdown

March 18th, 2011 7 Comments   Posted in nuclear energy and power

Improving Nuclear Plant Safety – Lessons Learned from Japan Meltdown

Authorities have tried frantically since last Friday’s earthquake and tsunami to avert an environmental catastrophe at the Fukushima Dai-ichi complex in northeastern Japan, 170 miles (270 kilometers) north Tokyo.

I have just read that out of guilt feelings, General Electric (GE) which designed and provided the boiling water reactor (BWR) for the plant is eagerly providing 10 truck mounted diesel generator sets for immediate use and disposal by the plant going into meltdown.

It was also mentioned that the GE design required active cooling of the spent fuel rods as it dissipates decay heat, in contrast to modern design that provides for passive cooling thru convected air currents that does not require power to cool spent fuel rods.

Other news also says the plant operator was too confident of the external grid power supply that it did not need to constantly test and maintain and run the backup diesel gensets since they have an 8-hour battery backup.

All this old design philosophy must now be trashed to the garbage bin and replaced with new designs such as: More »

How to Calculate the Cost Impact of Nuclear Power Addition to the Energy Mix – a Philippine estimate

How to Calculate the Cost Impact of Nuclear Power Addition to the Energy Mix – a Philippine estimate


This is the 4th sequel to the 1st blog on “How to Calculate the Levelized Cost of Energy – a simplified approach”.


Using sample data and reasonable assumptions, I’ve calculated the potential reduction in the weighted average levelized cost of electricity in the energy mix of the Philippines should the mothballed 620 MW Bataan Nuclear Power Plant (BNPP) be revived and allowed to operate again after being in preservation mode since the early 1990’s. More »

Shall We Go Nuclear?

Shall We Go Nuclear?

Oil Crisis of 2008

The recent oil crisis which saw the rise of crude oil prices to a peak of $147 per barrel in the world market and its attendant effect on raising electricity prices in the Philippines at a rate higher than its competitor economies in the region has brought forth renewed calls to review policies relative to the development of the Philippine Nuclear Industry.

Revive the 600 MW BNPP?

In particular, attention has been directed toward reviving the mothballed 600 MW Bataan Nuclear Power Plant (BNPP) constructed by the National Power Corporation in the early 1980’s. In its desire to be part of the growing list of nuclear power generation nations in the world, the Philippines implemented a national agenda that included the construction of the 600 MW BNPP in tandem with the 300 MW Kalayaan Pumped Storage Hydro Plant in 1982. The pumped storage would serve as a dummy load of the nuclear plant during off-peak periods at night in order to allow for a constant and stable generation of 600 MW of nuclear power throughout the entire day. (In the absence of the “cheap” nuclear electricity, the Laguna Lake water is pumped uphill to Lake Caliraya at night using geothermal, coal and sometimes expensive oil-based electricity in order to have adequate baseload capacity during day-time peak hours.)

Numerous Issues Hounded the BNPP

Unfortunately, or for reasons only Providence could imagine, the BNPP has been hounded with controversy ranging from allegations of overprice and corruption in the construction of the power plant, unsafe plant location being near an inactive volcano (Mt. Natib), being located near an active fault, possible long-term environmental harm to the nearby residents and Luzon populace in the event of accidental release of radio active gases and materials arising from a nuclear accident, unsafe plant design (pressurized water reactor or PWR), expensive electricity arising from its high cost per kW due to overprice (one 600 MW plant for the cost of two 600 MW plants as originally conceived), and of course, how to economically and safely dispose of the spent nuclear fuel material, radioactive control rods and other materials exposed to high levels of radiation.

More »

Large-Scale Project Finance Models

Large-Scale Project Finance Models:

  1. Oil Thermal Power Plant – 2,000 US$

  2. Pulverized Thermal Power Plant – 4,000 US$

  3. Advance Coal Thermal Power Plant – 6,000 US$

  4. Geothermal Power Plant – 8,000 US$

  5. Simple Gas Turbine Power Plant – 9,000 US$

  6. Combined Cycle Gas Turbine Power Plant – 10,000 US$

  7. Energy Storage Power Plant – 12,000 US$*
  8. Solar Thermal Power Plant – 14,000 US$*
  9. Fuel Cells Power Plant – 16,000 US$*
  10. Ocean Thermal Power Plant – 18,000 US$*
  11. Ocean Wave Power Plant – 20,000 US$*
  12. Tidal Power Plant – 22,000 US$*
  13. Nuclear Power Plant – 30,000 US$*

*Please inquire about payment options directly to me.


Contents:

1) Input (Assumption) Sheet

2) Report (Summary) Sheet

3) Project Cost Sheet (equipment cost, ocean freight, insurance, taxes & duties, brokerage & local shipping, erection & installation, land & right-of-way, project development & contract management, initial stocks & inventories, manpower mobilization & training, working capital, interest during construction, other capitalized expenses)

4) Construction Sheet (construction schedule, equity/loan drawdown, interest during construction)

5) Model Sheet (escalation of items, starting costs, capacity & degradation, heat rate & efficiency degradation, maintenance & overhaul scheduel, available hours, gross generation, plant use & net generation, transmission/distribution line constraints & losses, net electricity sales, revenue items, expense items, income statement, balance sheet, cash flow statement, project & equity IRR, project & equity payback, debt service cover ratio)

6) Depreciation Sheet (evolution of balance sheet accounts, working capital)

7) Loan Amortization Table (interest & principal repayment)

Nuclear Energy

The file (781 KB) will cover the following topics:

Nuclear Energy

Nuclear power – most controversial of all forms of power generation

Operating principle – Controlled nuclear fission in a reactor using uranium as fuel produces heat, which is captured to produce steam. The steam is used to drive a steam turbine, which in turn drives an electric generator.

Topics – Nuclear Energy

  • Nuclear Energy, Its Uses and History
  • Nuclear Power Capacity and Power Generation
  • Fundamentals of Nuclear Power
  • Types of Nuclear Reactors
  • BWR, PWR, AGR, HTGR, Breeder, GT-MHR
  • Cost of Nuclear Power
  • Environmental Considerations
  • Risks

Price: 70 USD