Subscribe

Coal-Fired Power Plant: How to Design and Calculate Plant Footprint, Fuel, Limestone, Hauling Trucks and Storage Areas for Coal and Ash

May 16th, 2014 Posted in clean coal technologies

Coal-Fired Power Plant: How to Design and Calculate Plant Footprint, Fuel, Limestone, Hauling Trucks and Storage Areas for Coal and Ash

Yes, your favourite energy technology expert has prepared a simple but easy-to-use power plant model to augment your project finance model to calculate the following:

1) Coal quality and quantity of coal reserves (measured, indicative, inferred, total in-situ reserves)

2) Average specification of coal reserve (heating value, ash, volatile combustible matter, fixed carbon, sulfur, moisture)

3) Ultimate analysis of coal reserve (Carbon, Hydrogen, Nitrogen, Oxygen, Sulfur)

4) Testing for ROM coal (unwashed) and upgraded coal (washed)

5) Typical ash composition and ash fusion temperature

6) Coal consumption rate given fuel-to-power conversion efficiency and capacity factor

7) Limestone consumption rate requirement given its purity and reaction efficiency

8) Number of hauling trucks for transferring coal bottom ash to the permanent ash pond storage area given truck capacity, turn-around time, and operating hours

9) Coal stock yard area and dimensions (Depth, Length, Width) given coal rate, 37 days fuel supply and its bulk density

10) Temporary ash pond area and dimensions  (Depth, Length, Width) given coal rate, ash content and bottom ash portion, 60 days temporary storage, and its bulk density

11) Permanent ash pond area and dimensions  (Depth, Length, Width) given coal rate, ash content and bottom ash portion, 25 years permanent storage, and its bulk density

12) Make-up water Cooling Tower flow rate (10 deg Celsius Rise and 5% loss to the atmosphere in the Cooling Tower)

13) Once-thru Condenser cooling water flow rate (3 deg Celsius Rise)

14) Air-cooled Condenser flow rate (10 deg Celsius Rise)

15) Neutralization Pond Dimensions (for Demin plant and Boiler Feed Water blowdown wastes)

16) Sedimentation Pond or Siltation Basin Dimensions (for coal, limestone, ash and loose soil carried by rainfall to storm drain)

17) Power plant footprint with 20% allowance

18) Transmission Line Losses with 20% allowance (due to type of conductor, length, voltage, power factor and number of phases)

If you are interested in the Coal-Fired CFB Project Finance Model (15, 30, 50, 75, 100, 140 MW) and the Coal-Fired Power Plant Design Tool Kit, please confirm your order via email to this address:

energydataexpert@gmail.com

I will then email you the price in US$ and my bank account details so you could remit payment via bank or wire transfer.

If it is a special problem, I can also customize the project finance model and the coal-fired power plant design tool kit.

You may pay also thru PayPal.

Cheers,

Energy Technology Expert

—-

COAL QUALITY AND TONNAGE OF 10.334 MILLION MT coal reserves              
Resource Area  Coal Block No.    Measured   Indicated Total In-situ      
      Reserves   Reserves Reserves       
    BTU/lb   Tonnage  BTU/lb   Tonnage  Tonnage  BTU/lb      
PATULANGAN  164 7,217 1,061,494 6,163 2,786,727 3,848,221 6,454    
WALDO-DENTE  165 7,319 236,968 7,548 170,569 407,537 7,415    
WALDO-DENTE  166 7,319 693,636 7,548 1,118,038 1,811,674 7,460    
LAGUNTANG  204 7,520 1,761,556 7,135 1,644,528 3,406,084 7,334    
GEORGIA-LIBAS/ KABADYANGAN 205 / 206 7,314 631,867 7,591 228,806 860,673 7,388    
Total    7,374 4,385,521 6,787 5,948,668 10,334,189 7,036    
TOTAL RESOURCE     10,334,189 MT          
GHV of Resource AVERAGE   7,036 BTU/lb           
  MINIMUM   6,163 BTU/lb           
  MAXIMUM   7,591 BTU/lb           
                   
Average specifications of coal resource                
Heating Value BTU/lb 7,036 16,366 kJ / kg this coal reserve        
Ash % 27.94 3,909 kCal / kg          
Volatile Combustible Material (VCM) % 37.29 4,200 kCal / kg actual coal used        
Fixed Carbon (FC) % 21.25 7,560 Btu / lb          
Moisture % 13.52 10.00% % ash actual ash used        
Sulfur (S) % 1.26 1.26% % sulfur actual sulfur used        
                   
Testing for ROM coal (unwashed) and upgraded coal (washed)               
  ROM Coal Upgraded Coal              
Specifications (as-received basis) (air-dried)              
Heating Value, BTU/lb 6,670 8,500              
% Moisture 14.82 10.33              
% Fixed Carbon (FC) 23.98 28.85              
% Ash 24.33 15.77              
% Sulfur (S) 1.43 1.38              
% VCM 36.87 45.05              
HGI 47 40              
Ash Fusion, deg C:                  
     (a)  Oxidizing 1,446 1,363              
     (b)  Reducing 1,442 1,308              
                   
1.05506 kJ / Btu Btu / lb x 2.2046 lb/kg x 1.05506 kJ / Btu = kJ / kg          
4.1868 kJ / kCal kJ / kg x kCal / 4.1868 kJ = kCal / kg            
2.2046 lb / kg kCal / kg x kg / 2.2046 lb x 4.1868 kJ / kCal / 1.05506 kJ / Btu = Btu / lb        
                   
COAL REQUIREMENT AT VARIOUS PLANT CAPACITIES (2 x 50 MW)              
100 MW Conversion Factors              
1 h / h                
100 MWh / h                
    90.00% CFB Boiler Efficiency          
    40.00% Rankin Steam Turbine Efficiency          
    95.04% Generator Efficiency          
292 MWh / h 34.21% Overall Fuel to Electricity Efficiency          
292,275 kWh / h 1,000 kWh / MWh            
1,052,188,552 kJ / h 3,600 kJ / kWh            
997,278,403 BTU / h 1.05506 kJ / BTU 3412.12822 Btu / kWh        
131,914 lb / h 7,560 BTU / lb            
59,836 kg / h 2.2046 lb / kg            
60 MT / h 1,000 kg / MT            
1,436 MT / day 24 h / day            
    365 days per year            
    80.00% capacity factor            
419,330 MT / year 292 operating days per year          
                   
LIMESTONE REQUIREMENT (2 X 50 MW)                
CaCO3 + SO2 + 1/2 O2 –> CaSO4 + CO2                
Molecular Weights (kg / kgmol):                  
CaCO3   100.0892 40.08 12.011 15.9994        
SO2   64.0648 32.066 15.9994          
O2   31.9988   15.9994          
CaSO4   136.1436 40.08 32.066 15.9994        
CO2   44.0098 12.011 15.9994          
1000   kg coal              
1.26%   % Sulfur seam 1   100.00%          
    % Sulfur seam 2              
1.26%   % Sulfur average   100.00%          
12.60   kg Sufur              
32.066   kg / kgmol Sulfur              
0.39294   kg mol Sulfur              
0.39294   kg mol CaCO3 = CaSO4            
39.32901   kg CaCO3              
90.00%   % CaCO3 in limestone (purity) 500.00 PhP/MT limestone        
43.69890   kg CaCO3              
20.00%   conversion efficiency (1/5)            
218.49448   kg limestone              
0.21849 MT / MT coal actual kg limestone per kg coal            
0.16400   kg limestone per kg coal (JCI Study)            
0.29720   kg CaSO4 produced per kg coal            
1,436 MT / day Coal requirement              
314 MT / day Limestone requirement            
292   Days per year              
91,621 MT / year Limestone requirement            
                   
COAL HAULING TRUCKS REQUIREMENT (2 x 50 MW)                
100 MW Conversion Factors              
1 h / h                
100 MWh / h                
    90.00% CFB Boiler Efficiency          
    40.00% Rankin Steam Turbine Efficiency          
    95.04% Generator Efficiency          
292 MWh / h 34.21% Overall Fuel to Electricity Efficiency          
292,275 kWh / h 1,000 kWh / MWh            
1,052,188,552 kJ / h 3,600 kJ / kWh            
997,278,403 BTU / h 1.05506 kJ / BTU 3412.12822 Btu / kWh        
131,914 lb / h 7,560 BTU / lb            
59,836 kg / h 2.2046 lb / kg            
60 MT / h 1,000 kg / MT            
1,436 MT / day 24 h / day            
    8 h / day of truck transport          
8,616 MT / week 6 days / week of truck transport          
    48 h / week of truck transport          
    20 MT / h truck capacity (1 hour round trip)          
9.0 dump trucks 960 MT / week / dump truck          
                   
Coal Stock Yard with roof (2 x 50 MW)   100 MW          
1,436 MT / day coal   Coal requirement, “as received” basis          
    30 days of storage capacity          
    7 allowance for mine upsets or delivery upsets (1 week)        
    37 total days storage capacity          
53,134 MT in stock yard   total volume of stock yard          
44,800 cum stock yard 1.2 Assumed in-situ relative density, MT/cum          
    5 Maximum height of coal stock yard, m          
8,960 sqm floor area   Area of coal stock yard floor   2 x W^2 = V      
67 m wide   Width (W)     W^2 = V/2      
134 m long   Length (L = 2 x W)     W = sqrt(V/2) = (V/2)^(1/2)    
                   
Ash Pond with HDPE lining on sides and floor (2 x 50 MW) 100 MW          
1,436 MT / day coal   Coal requirement, “as received” basis   MT reserves      
    10.00% Ash content – Seam 1   10,334,189 100.00%    
      Ash content – Seam 2     0.00%    
144 MT / day ash 10.00% Ash content – Average   10,334,189 100.00%    
427 MT / day CaSO4 0.2972 CaSO4 produced, MT per MT coal          
570 MT / day total                
    5 days of storage capacity for ash          
    55 allowance for power plant upsets   95% 365 18 days
    60 total days storage capacity   90% 365 37 days
34,224 MT in ash pond   total volume of stock yard   85% 365 55 days
29,000 cum ash pond 1.2 Assumed bulk density of ash, MT/cum   80% 365 73 days
    5 Maximum depth of ash pond, m          
5,800 sqm floor area   Area of ash pond floor   2 x W^2 = V      
54 m wide   Width (W)     W^2 = V/2      
108 m long   Length (L = 2 x W)     W = sqrt(V/2) = (V/2)^(1/2)    
                   
Ash Pond Dimension & Capacity for 25 years operation                
  cap factor   MT/day MT/year          
40% 80.00% 365 57.44 16,773 bottom ash        
60%     86.16 25,160 fly ash        
100%     143.61 41,933 total ash        
                   
                   
                   
  years MT              
  25 419,330              
    1.2 MT/cum            
    349,442 cum            
    10 m deep            
    34,944 sqm 3.49 ha        
    132 m wide 0.132 km        
    264 m long 0.264 km        
                   
BOTTOM ASH HAULING TRUCKS REQUIREMENT (2 x 50 MW)              
100 MW Conversion Factors              
1 h / h                
100 MWh / h                
    90.00% CFB Boiler Efficiency          
    40.00% Rankin Steam Turbine Efficiency          
    95.04% Generator Efficiency          
292 MWh / h 34.21% Overall Fuel to Electricity Efficiency          
292,275 kWh / h 1,000 kWh / MWh            
1,052,188,552 kJ / h 3,600 kJ / kWh            
997,278,403 BTU / h 1.05506 kJ / BTU 3412.12822 Btu / kWh        
131,914 lb / h 7,560 BTU / lb            
59,836 kg / h 2.2046 lb / kg            
60 MT / h 1,000 kg / MT            
1,436 MT / day 24 h / day            
144 MT / day 10% coal ash            
57 MT / day 40% bottom ash in coal ash          
    8 h / day of truck transport          
345 MT / week 6 days / week of truck transport          
    48 h / week of truck transport          
    5 MT / h truck capacity (10 MT truck capacity, 2 hour round trip)        
2.0 dump trucks 240 MT / week / dump truck          
                   
Make-Up Water for Cooling Tower (10 deg Celsius Rise) – 2 x 50 MW              
100 MW Conversion Factors              
1 h / h                
100 MWh / h                
    90.00% CFB Boiler Efficiency   fuel to steam      
    40.00% Rankin Steam Turbine Efficiency   steam to drive shaft      
    95.04% Generator Efficiency   drive shaft to electricity    
292 MWh / h 34.21% Overall Fuel to Electricity Efficiency   fuel to electricity      
292,275 kWh / h 1,000 kWh / MWh            
1,052,188,552 kJ / h 3,600 kJ / kWh            
997,278,403 BTU / h 1.05506 kJ / BTU     Energy input from fuel    
897,550,563 BTU / h 90% CFB Boiler Efficiency   Energy to steam      
99,727,840 BTU / h 10% Heat Losses to Atmosphere   Energy to atmosphere & losses    
897,550,563 BTU / h         Energy input to steam turbine    
359,020,225 BTU / h 40% Rankin Steam Turbine Efficiency   Energy to drive shaft    
538,530,338 BTU / h 60% Heat Losses to Condenser   Energy to condenser / cooling tower    
359,020,225 BTU / h         Energy input to drive shaft    
341,212,822 BTU / h 95% Generator Efficiency   Energy to electricity      
17,807,403 BTU / h 5% Heat Losses to Generator   Energy to generator losses    
538,530,338 BTU / h         Energy input to condenser / cooling tower  
511,603,821 BTU / h 95% Heat transferred to cooling water   Energy to cooling water    
26,926,517 BTU / h 5% Heat Losses to Atmosphere   Energy to atmosphere & losses    
    10 Allowable temperature Rise, deg C     cum / h   cum / h
    1.8 deg F per deg C rise   MW Water Circulating CTW Losses Make-up
    18 Allowable temperature Rise, deg F   15 1,934 5.00% 97
    1 Specific heat of water, Btu / lb deg F   30 3,868 5.00% 193
28,422,434 lb / h 18.00 Allowable Btu / lb     50 6,446 5.00% 322
12,892,332 kg / h 2.2046 lb / kg     100 12,892 5.00% 645
12,892 cum / h 1,000 kg / cubic meter (kg / cum)   140 18,049 5.00% 902
645 cum / h 5.00% make-up water (cooling tower losses to atmosphere)        
0.1791 cum / sec make-up water              
                   
Once-Thru Cooling Water (3 deg Celsius Rise) – 2 x 50 MW              
100 MW Conversion Factors              
1 h / h                
100 MWh / h                
    90.00% CFB Boiler Efficiency   fuel to steam      
    40.00% Rankin Steam Turbine Efficiency   steam to drive shaft      
    95.04% Generator Efficiency   drive shaft to electricity    
292 MWh / h 34.21% Overall Fuel to Electricity Efficiency   fuel to electricity      
292,275 kWh / h 1,000 kWh / MWh            
1,052,188,552 kJ / h 3,600 kJ / kWh            
997,278,403 BTU / h 1.05506 kJ / BTU     Energy input from fuel    
897,550,563 BTU / h 90% CFB Boiler Efficiency   Energy to steam      
99,727,840 BTU / h 10% Heat Losses to Atmosphere   Energy to atmosphere & losses    
897,550,563 BTU / h         Energy input to steam turbine    
359,020,225 BTU / h 40% Rankin Steam Turbine Efficiency   Energy to drive shaft    
538,530,338 BTU / h 60% Heat Losses to Condenser   Energy to condenser / cooling tower    
359,020,225 BTU / h         Energy input to drive shaft    
341,212,822 BTU / h 95% Generator Efficiency   Energy to electricity      
17,807,403 BTU / h 5% Heat Losses to Generator   Energy to generator losses    
538,530,338 BTU / h         Energy input to condenser / cooling tower  
511,603,821 BTU / h 95% Heat transferred to cooling water   Energy to cooling water    
26,926,517 BTU / h 5% Heat Losses to Atmosphere   Energy to atmosphere & losses    
    3 Allowable temperature Rise, deg C     cum / h    
    1.8 deg F per deg C rise   MW Water Circulating    
    5.4 Allowable temperature Rise, deg F   15 6,446    
    1 Specific heat of water, Btu / lb deg F   30 12,892    
94,741,448 lb / h 5.40 Allowable Btu / lb     50 21,487    
42,974,439 kg / h 2.2046 lb / kg     100 42,974    
42,974 cum / h 1,000 kg / cubic meter (kg / cum)   140 60,164    
11.94 cum / sec once-thru water              
                   
Air Cooled Condenser (10 deg Celsius Rise) – 2 x 50 MW                
100 MW Conversion Factors              
1 h / h                
100 MWh / h                
    90.00% CFB Boiler Efficiency   fuel to steam      
    40.00% Rankin Steam Turbine Efficiency   steam to drive shaft      
    95.04% Generator Efficiency   drive shaft to electricity    
292 MWh / h 34.21% Overall Fuel to Electricity Efficiency   fuel to electricity      
292,275 kWh / h 1,000 kWh / MWh            
1,052,188,552 kJ / h 3,600 kJ / kWh            
997,278,403 BTU / h 1.05506 kJ / BTU     Energy input from fuel    
897,550,563 BTU / h 90% CFB Boiler Efficiency   Energy to steam      
99,727,840 BTU / h 10% Heat Losses to Atmosphere   Energy to atmosphere & losses    
897,550,563 BTU / h         Energy input to steam turbine    
359,020,225 BTU / h 40% Rankin Steam Turbine Efficiency   Energy to drive shaft    
538,530,338 BTU / h 60% Heat Losses to Condenser   Energy to condenser / cooling tower    
359,020,225 BTU / h         Energy input to drive shaft    
341,212,822 BTU / h 95% Generator Efficiency   Energy to electricity      
17,807,403 BTU / h 5% Heat Losses to Generator   Energy to generator losses    
538,530,338 BTU / h         Energy input to condenser / cooling tower  
511,603,821 BTU / h 95% Heat transferred to cooling water   Energy to cooling water    
26,926,517 BTU / h 5% Heat Losses to Atmosphere   Energy to atmosphere & losses    
    10 Allowable temperature Rise, deg C     000 cum / h    
    1.8 deg F per deg C rise   MW Air circulating    
    18 Allowable temperature Rise, deg F   15 7,148    
    0.240 Specific heat of air, Btu / lb deg F   30 14,297 1.005 kJ / kg-C
118,406,264 lb / h 4.32 Allowable Btu / lb     50 23,828 1.127 kg / cum
53,708,729 kg / h 2.2046 lb / kg     100 47,656    
47,656,370 cum / h 1.127 kg / cubic meter (kg / cum)   140 66,719    
13,238 cum / sec air              
                   
Neutralization Pond (Demin plant and Boiler Feed Water Blowdown wastes)            
                   
  Plant Size Depth, m Width, m Length, m Volume, cum R = L / W Cost, $    
0.2 600 10.0 30.0 80.0 24,000 2.67   V = Vo x (Q / Qo)^n
0 15 10.0 20.8 55.5 11,500 2.67   where n = 0.2  
0 30 10.0 22.2 59.2 13,200 2.67   R x W^2 x D = V
0 50 10.0 23.4 62.4 14,600 2.67   W^2 = V / (R x D)
1 100 10.0 25.1 66.9 16,800 2.67   W = sqrt(V / R / D) = (V / R / D)^(1/2)
0 140 10.0 25.9 69.1 17,900 2.67   L = R W  
USED 100 10.0 25.1 66.9 16,800 Used      
                   
Sedimentation Pond or Siltation Basin (coal, limestone, ash and loose soil carried by rainfall to storm drain)          
                   
  Plant Size Depth, m Width, m Length, m Volume, cum R = L / W Cost, $    
0.2 600 10.0 10.0 100.0 10,000 10.00   V = Vo x (Q / Qo)^n
0 15 10.0 6.9 69.0 4,800 10.00   where n = 0.2  
0 30 10.0 7.4 74.0 5,500 10.00   R x W^2 x D = V
0 50 10.0 7.8 78.0 6,100 10.00   W^2 = V / (R x D)
1 100 10.0 8.4 84.0 7,000 10.00   W = sqrt(V / R / D) = (V / R / D)^(1/2)
0 140 10.0 8.7 87.0 7,500 10.00   L = R W  
USED 100 10.0 8.4 84.0 7,000 Used      
                   
Power Plant Footprint (with 20% allowance)                
                   
0.737 120% Footprint              
MW Area, ha ha              
15 5 6.0              
30 8 9.6              
50 12 14.4 given at 50 MW            
70 15 18.0              
100 20 24.0 given at 100 MW            
140 26 31.2              
                   
Transmission Line Losses (due to type of conductor, length, voltage, power factor and number of phases)          
2 x 50 MW Site A – near River                
Line Voltage 69 kV   km 1.609        
Power 100,000 kW   mile 1        
Length (with 20% allowance) 12.00 km 10.00 feet 5280        
Power Factor 0.85 lag              
Total Line Current 984.399 A   resistivity of Al 20 17.002 ohm-cmil/ft    
Line Current/Circuit 328.133 A     25 17.345 ohm-cmil/ft    
No. of Circuit 3                
                   
Trnasmission Line                  
  Ampacity Resistance (ohms/mile)   Loss (3-phase)*        
ACSR (MCM) A 25 deg.C 50 deg.C 90 deg.C kW %      
336 530 0.278 0.306 0.351 6563.56 6.564%      
795 900 0.119 0.138 0.168 3141.08 3.141%      
                   
AAC (MCM) A 20 deg.C 25 deg.C 90 deg.C kW %      
336 495 0.267 0.273 0.343 6410.78 6.411%      
789 855 0.114 0.116 0.146 2730.07 2.730% USE LOWEST    
              ENERGY LOSS    
                   
Properties of Air http://www.engineeringtoolbox.com/air-properties-d_156.html            
Temperature Density Specific heat capacity Thermal conductivity Kinematic viscosity Expansion coefficient Prandtl’s number      
t cp k – ν – b – – Pr      
(oC) (kg/m3) (kJ/kg.K) (W/m.K) x 10-6(m2/s) x 10-3(1/K)        
-150 2.793 1.026 0.0116 3.08 8.21 0.76      
-100 1.98 1.009 0.016 5.95 5.82 0.74      
-50 1.534 1.005 0.0204 9.55 4.51 0.725      
0 1.293 1.005 0.0243 13.3 3.67 0.715      
20 1.205 1.005 0.0257 15.11 3.43 0.713      
40 1.127 1.005 0.0271 16.97 3.2 0.711      
60 1.067 1.009 0.0285 18.9 3 0.709      
80 1 1.009 0.0299 20.94 2.83 0.708      
100 0.946 1.009 0.0314 23.06 2.68 0.703      
120 0.898 1.013 0.0328 25.23 2.55 0.7      
140 0.854 1.013 0.0343 27.55 2.43 0.695      
160 0.815 1.017 0.0358 29.85 2.32 0.69      
180 0.779 1.022 0.0372 32.29 2.21 0.69      
200 0.746 1.026 0.0386 34.63 2.11 0.685      
250 0.675 1.034 0.0421 41.17 1.91 0.68      
300 0.616 1.047 0.0454 47.85 1.75 0.68      
350 0.566 1.055 0.0485 55.05 1.61 0.68      
400 0.524 1.068 0.0515 62.53 1.49 0.68      
                   
Mean Temperature (C) and Humidity (%) (SOURCE: IEER) 27.31 Mean Temp. 85.3 Ave Humidity      
          Records from:        
Location: Hinatuan, Surigao del Sur Synoptic Station (PAGASA 2000)     Source: PAGASA 2000      
                   
Month Rainfall Ave. (mm) Temperature (deg C) Humidity Wind Wind    
  Max. Min. Mean % Direction Speed (m/s)    
                   
Jan 728.20 29.7 22.5 26.1 88.0 NE 2.0    
Feb 516.30 29.8 22.4 26.1 88.0 NE 2.0    
Mar 446.70 30.5 22.7 26.6 86.0 NE 2.0    
Apr 322.30 31.6 23.2 27.4 85.0 E-W 2.0    
May 240.60 32.4 23.7 28.1 85.0 E-W 2.0    
Jun 262.60 32.3 23.5 27.9 85.0 W 2.0    
Jul 203.30 32.5 23.2 27.9 83.0 W 2.0    
Aug 180.60 32.9 23.3 28.1 82.0 W 2.0    
Sep 204.40 32.7 23.1 27.9 83.0 W 2.0    
Oct 261.20 32.3 23.2 27.8 84.0 W 2.0    
Nov 339.90 31.4 23.1 27.2 86.0 W 2.0    
Dec 539.1 30.4 22.8 26.6 88.0 W 2.0    
                   
Min 180.60 29.7 22.4 26.1 82.0   2.0    
Max 728.20 32.9 23.7 28.1 88.0   2.0    
Ave 353.77 31.5 23.1 27.3 85.3 W 2.0    
                   
Coal Characteristics of Design Coal   (SAMPLE DATA) 4,201 Btu / lb 7,560 Btu / lb used      
      0.40 % Sulfur 1.26 % Sulfur used      
                   
Characteristic   Unit “As Received” Basis “Moisture Free” Basis      
                   
Carbon   % wt. 26.10   58.00        
Hydrogen   % wt. 1.80   4.00        
Oxygen   % wt. 11.25   25.00        
Nitrogen   % wt. 0.23   0.51        
Sulfur   % wt. 0.36   0.80        
Chlorine   % wt. 0.04 0.40 0.09        
Ash   % wt. 5.22   11.60        
Moisture   % wt. 55.00            
Total   % wt. 100.00 Btu / lb 100.00 Btu / lb      
Gross Calorific Value   kcal / kg 2,334 4,201 5,187 9,336      
Net Calorific Value   kcal / kg 1,917 3,451 4,260 7,668      
Note: MFB = ARB x (100 / (100 – Moisture)              
                   
Coal Analysis Data by AL and Comparison with Data by PNC (SAMPLE DATA)            
                   
  Item Unit CC-260 BII 685 CC-235 BII 601 CC-232 BII-600  
      P2-028 P2-007 P2-006  
Analyzed at:     AL PNC AL PNC AL PNC  
Proximate Analysis                  
TM – Total Moisture   % 61.70   53.90   50.00    
IM – Inherent Moisture   % 21.10 11.76 20.60 12.43 9.20 11.86  
Ash (815 deg C)   % 5.30 20.67 8.40 10.10 49.60 16.80  
VM – Volatile Matter   % 53.50 38.54 54.20 41.78 32.80 37.97  
FC – Fixed Carbon   % 41.20 29.03 37.40 35.69 17.60 33.37  
Ultimate Analysis                  
Carbon   % 64.50            
Hydrogen   % 4.10            
Nitrogen   % 0.84            
Total Sulfur   % 0.36 0.69   0.58   0.25  
Combustible Sulfur   % 0.07            
Total Chlorine   % 0.04            
Volatile Chlorine   % 0.04            
Oxygen (by calculation)   % 25.15            
Gross Calorific Value   kJ /kg 26,960 7,655 25,510 9,100 11,620 8,168  
    kcal / kg 6,439   6,093   2,775    
    BTU / lb   4,253   5,056   4,538  
Net Calorific Value   kJ /kg 26,030            
    kcal / kg 6,217            
    BTU / lb              
PNC     51            
Remarks:   (1) AL – an authorized laboratory            
    (2) The data by PNC are “air dried” basis.          
                   
Coal Sample C-260 Ash Analysis Data   (SAMPLE DATA)            
                   
Composition   Analyzed Values   Compositions   Analyzed Values      
SiO2 wt. % 5.95   KO wt. % 0.08      
Al2O3 wt. % 8.95   P2O5 wt. % 0.04      
Fe2O3 wt. % 24.10   SO3 wt. % 13.90      
CaO wt. % 33.00   Cl ppm 0.04      
MgO wt. % 11.60   F   90.00      
Na2O wt. % 0.25              
Remarks: (1) The ash sample was collected after heating the coal sample to 815 deg C +/- 10 deg C.        
  (2) The fusion test of the ash sample CC-260 was carried out in accordance with          
        JIS M8801 and the following results have been obtained (refer to photographs).          
        Initial Deformation 1,320 deg C          
        Hemisphere Point 1,450 deg C and above          
        Flow Point   1,450 deg C and above          
                   
ENVIRONMENTAL STANDARDS (AIR, NOISE, WATER)                
Air Emission:                  
Clean Air Act of 1999                  
                   
NOx 260 mg/Nm3              
SOx 340 mg/Nm3 as SO2              
TSP 200 mg/Nm3              
Exhaust Noise Level:                  
Official Gazette Vol. 74, No. 23, 5 June 1978                
                   
Noise 90 dB measured at 10 meters distance            
Effluent Standards:                  
1990 Effluent Regulations                  
    Class D              
Temperature Rise 3 deg C              
pH 6 minimum              
  9 maximum              
COD 200 mg/L              
5-day 20C BOD 120 mg/L              
TSP 150 mg/L              
TDS 1,000 mg/L              

—-

 

Leave a Reply

XHTML: You can use these tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>