Biomass Direct Combustion (steam boiler + turbine) Project Finance Models (Deterministic and Stochastic)

January 4th, 2018 No Comments   Posted in financial models

Biomass Direct Combustion (steam boiler + turbine) Project Finance Models (Deterministic and Stochastic)

Your energy technology selection expert is pleased to announce that deterministic (fixed inputs) and stochastic (random inputs from Monte Carlo Simulation) are now available for all power generation technologies (renewable energy such as biomass, solar PV and CSP, wind, mini-hydro, ocean thermal and ocean tidal/current, and conventional energy such as large hydro, geothermal, and fossil energy such as oil diesel and oil thermal, natural gas simple cycle and combined cycle, coal thermal and clean coal technologies, nuclear energy, and energy storage and waste heat recovery and combined heat and power technologies).

In the case of biomass direct combustion (steam boiler + turbine), the following samples may be purchased at 50% discount.

You may download the following samples to try the advanced features of using fixed inputs and random inputs in order to manage your project risks:

Deterministic (fixed inputs) model: (USD 700):

ADV Biomass Direct Combustion Model3 (demo)  – in PHP

ADV Biomass Direct Combustion Model3 (demo) (USD)

Stochastic (random inputs from Monte Carlo Simulation) model (USD 1400):

ADV Biomass Direct Combustion Model3_MCS (demo) – in PHP

ADV Biomass Direct Combustion Model3_MCS (demo) (USD)

Before you can run the MCS model, you need to download first the Monte Carlo Simulation add-in and run it before running the above MCS model:

MonteCarlito_v1_10

The model inputs consist of the fixed inputs (independent variables) plus a random component as shown below (based on +/- 10% range, which you can edit in the Sensitivity worksheet):

1) Plant availability factor (% of time) = 94.52% x ( 90% + (110% – 90%) * RAND() )

2) Fuel heating value (GHV) = 5,198 Btu/lb x ( 90% + (110% – 90%) * RAND() )

3) Plant capacity per unit = 12.00 MW/unit x ( 90% + (110% – 90%) * RAND() )

4) Variable O&M cost (at 5.26 $/MWh) = 30.05 $000/MW/year x ( 90% + (110% – 90%) * RAND() )

5) Fixed O&M cost (at 105.63 $/kW/year) = 1,227.64 $000/unit/year x ( 90% + (110% – 90%) * RAND() )

6) Fixed G&A cost = 10.00 $000/year x ( 90% + (110% – 90%) * RAND() )

7) Cost of fuel = 1.299 PHP/kg x ( 90% + (110% – 90%) * RAND() )

8) Plant heat rate = 12,186 Btu/kWh x ( 90% + (110% – 90%) * RAND() )

9) Exchange rate = 43.00 PHP/USD x ( 90% + (110% – 90%) * RAND() )

10) Capital cost = 1,935 $/kW x ( 90% + (110% – 90%) * RAND() )

The dependent variables that will be simulated using Monte Carlo Simulation and which a distribution curve (when you make bold font the number of random trials) may be generated are as follows:

1) Equity Returns (NPV, IRR, PAYBACK) at 30% equity, 70% debt

2) Project Returns (NPV, IRR, PAYBACK) at 100% equity, 0% debt

3) Net Profit After Tax

4) Pre-Tax WACC

5) Electricity Tariff (Feed-in-Tariff)

The models are in Philippine Pesos (PHP) and may be converted to any foreign currency by inputting the appropriate exchange rate (e.g. 1 USD = 1.0000 USD; 1 USD = 50.000 PHP, 1 USD = 3.800 MYR, etc.). Then do a global replacement in all worksheets of ‘PHP’ with ‘XXX’, where ‘XXX’ is the foreign currency of the model.

To purchase, email me at:

energydataexpert@gmail.com

You may pay using PayPal:

energydataexpert@gmail.com

or via bank/wire transfer:

====================

1) Name of Bank Branch & Address:

The Bank of the Philippine Islands (BPI)

Pasig Ortigas Branch

G/F Benpres Building, Exchange Road corner Meralco Avenue

Ortigas Center, PASIG CITY 1605

METRO MANILA, PHILIPPINES

2) Account Name:

Marcial T. Ocampo

3) Account Number:

Current Account = 0205-5062-41

4) SWIFT ID Number = BOPIPHMM

====================

Once I confirm with PayPal or with my BPI current account that the payment has been made, I will then email you the real (un-locked) model to replace the demo model you have downloaded.

Hurry and order now, this offer is only good until January 31, 2018.

Regards,

Your Energy Technology Selection and Project Finance Expert

 

Project Finance Models for CLEAN DEVELOPMENT MECHANISM (CDM EDITION)

June 27th, 2012 No Comments   Posted in renewable energy

Project Finance Models for CLEAN DEVELOPMENT MECHANISM (CDM EDITION)

Yes, your energy technology selection and business development expert has developed a low-cost set of project finance models for CDM professionals (engineers, business development, investment bankers, managers) and novice professionals who want to learn and start their career in financial modeling of renewable energy projects.

Just follow this link to order, pay and download your favorite renewable energy project finance model – CLEAN DEVELOPMENT MECHANISM EDITION. More »

Project Finance Models for FEED-IN-TARIFF REGULATOR

June 27th, 2012 1 Comment   Posted in renewable energy

Project Finance Models for FEED-IN-TARIFF REGULATOR

Yes, your energy technology selection and business development expert has developed a low-cost set of project finance models for government feed-in-tariff regulators and novice professionals who want to learn and start their career in financial modeling of renewable energy projects.

Just follow this link to order, pay and download your favorite renewable energy project finance model – FEED-IN-TARIFF REGULATOR EDITION. More »

Project Finance Models for PROFESSIONALS

June 27th, 2012 No Comments   Posted in renewable energy

Project Finance Models for PROFESSIONALS

Yes, your energy technology selection and business development expert has developed a low-cost set of project finance models for professionals (engineers, business development, investment bankers, managers) and novice professionals who want to learn and start their career in financial modeling of renewable energy projects.

Just follow this link to order, pay and download your favorite renewable energy project finance model – PROFESSIONAL EDITION. More »

Project Finance Models for STUDENTS

June 27th, 2012 No Comments   Posted in renewable energy

 Project Finance Models for STUDENTS

Yes, your energy technology selection and business development expert has developed a low-cost set of project finance models for students (college, masteral, PhD) and novice professionals who want to learn and start their career in financial modeling of renewable energy projects.

Just follow this link to order, pay and download your favorite renewable energy project finance model – STUDENT EDITION. More »

CDM Biomass Direct Combustion Model2.xls

June 25th, 2012 No Comments   Posted in renewable energy

CDM Biomass Direct Combustion Model2.xls

In addition to the worksheets found in the ADV models of the regulator, 5 additional tabs or worksheets have been added (Capex, Opex, Revenues, Project IRR and Sensitivity) into the CDM model which is a financial evaluation without taxes (that distort the economic and technical performance) and debt (pure equity investment). For the RE project to benefit from CDM credits, the project IRR should not be more than 15% p.a.

Direct combustion of biomass system (furnace, boiler, steam turbine, generator) is carried out mostly in the countryside where biomass is abundant from agricultural activity such as paddy rice, corn fields, cotton fields, sugar cane fields, tree plantation and municipal solid waste (MSW). A 50-km radius of agricultural land can support around 6-12 MW of biomass power plant as in the case of India. More »

MTO Biomass Direct Combustion Model.xls

June 24th, 2012 No Comments   Posted in renewable energy

MTO Biomass Direct Combustion Model.xls

Direct combustion of biomass system (furnace, boiler, steam turbine, generator) is carried out mostly in the countryside where biomass is abundant from agricultural activity such as paddy rice, corn fields, cotton fields, sugar cane fields, tree plantation and municipal solid waste (MSW). A 50-km radius of agricultural land can support around 6-12 MW of biomass power plant as in the case of India.

This MTO first-year tariff model for biomass direct combustion makes use of the basic assumptions of the country’s RE regulator for rated capacity (8.3 MW), capacity factor (75%), plant own use (10%), and transmission line loss (3%). More »

ADV Biomass Direct Combustion Model.xls

June 24th, 2012 No Comments   Posted in renewable energy

ADV Biomass Direct Combustion Model.xls

Direct combustion of biomass system (furnace, boiler, steam turbine, generator) is carried out mostly in the countryside where biomass is abundant from agricultural activity such as paddy rice, corn fields, cotton fields, sugar cane fields, tree plantation and municipal solid waste (MSW). A 50-km radius of agricultural land can support around 6-12 MW of biomass power plant as in the case of India.

This advanced feed-in-tariff model for biomass direct combustion makes use of the basic assumptions of the country’s RE regulator for rated capacity (1 x 8.3 MW), capacity factor (80%), plant own use (10%), and 0.20% plant degradation rate. More »

Get Your Project Finance Models the Easy Way – Shopping Cart

Get Your Project Finance Models the Easy Way – Shopping Cart

You can now order on-line your project finance models the easy way – via the Shopping Cart.

Once you have decided to purchase, proceed to order via the shopping cart and pay thru PayPal thru your bank account or your credit card and download immediately the models. More »

Latest Feed-in-Tariff Rates for Renewable Power Generation Technologies

August 4th, 2011 2 Comments   Posted in renewable energy

Latest Feed-in-Tariff Rates for Renewable Power Generation Technologies

Fears of price spike due to renewable energy allayed

BY JOHN LOURENZE POQUIZ

The National Renewable Energy Board yesterday allayed fears of a spike in power rates with the tapping of renewable energy, saying the added cost will only be about 12.57 centavos per kilowatt-hour. (1 US$ = 41 Pesos, 1 Peso = 100 centavos)

In its proposed feed-in tariff (FIT) rates submitted to the Energy Regulatory Commission, the NREB pegged the rates at P6.15 per kWh for hydro, P7 for biomass, P10.37 for wind, P17.65 for ocean energy, and P17.95 for solar.

This gives an average of P11.82 per kWh. More »

New Simplified Calculation Procedure for Levelized Cost of Energy (LCOE) and Feed-in Tariff

July 28th, 2010 3 Comments   Posted in cost of power generation

New Simplified Calculation Procedure for Levelized Cost of Energy (LCOE) and Feed-in Tariff

As part of the on-going technical preparations for the proposed mini-conference on the Mindanao Power Crisis this coming late August or early September 2010 and the main conference on “Energy & Climate Change”, the workshop coordinator, Mr. Marcial T. Ocampo, has prepared the simplified calculation procedure for calculating the levelized cost of energy (LCOE) and levelized selling price (tariff) for conventional and renewable energy resources.

The result of the simplified formulas using the US NREL formula for generation cost and the RP MTO formula for selling price were compared with the results from a full-blown project finance model and the variance between the two methods were minimal in most of the power generation technologies analyzed.

The input data came from the IEPR research summary of 2007 and from internationally published data on power generation technology by noted experts such as Paul Breeze and yours truly, Marcial Ocampo. More »

ENERGY & CLIMATE CHANGE: A Complete Review of Power Generation Technologies and Impact on Climate Change

July 15th, 2010 5 Comments   Posted in energy & climate change

For:    ________________________ (name of suggested speaker/presentor, discussant/reactor, contributor/donor, exhibitor, participant)

From:  Marcial T. Ocampo

former Executive Director, Philippine Council for Industry & Energy Research & Development (PCIERD)

Department of Science & Technology (DoST)

Republic of the Philippines

Subject: Invitation to Conference on Energy & Climate Change as Speaker/Presentor, Discussant/Reactor, Contributor/Donor, Exhibitor, Participant (top management by invitation)

————————————-

Dear Sir/Madam:

In view of the need to provide stakeholders’ input into the development of a new energy strategy of the incoming administration of President Aquino towards sustainable development, I would like to invite you to solicit your interest and participation on the proposed conference on

ENERGY & CLIMATE CHANGE:  A Complete Review of Power Generation Technologies and Impact on Climate Change

Date: tentative September-October 2010

Venue: To be arranged More »

Municipal Solid Waste (MSW) to Power Project

July 3rd, 2010 11 Comments   Posted in feed-in tariff

Municipal Solid Waste (MSW) to Power Project

This is a power point presentation with a project finance model for calculating feed-in tariff (FiT).

The FiT is a renewable energy charge paid to renewable energy (RE) developers for providing power to the grid.  It is paid for by the Transco operator who collects a renewable energy charge (REC) from all consumers of electricity in the country.  By being spread out to all consumers, the burden of a higher FiT compared to the average grid rate is shared equally by all citizens and consumers alike since they will benefit from the positive impact of RE on global warming and climate change issues.

More »