Special Sale on Power Plant Project Finance Models (Deterministic and Stochastic) – Renewable, Conventional, Fossil, Nuclear and Waste Heat Recovery Technologies

January 7th, 2018 No Comments   Posted in financial models

Special Sale on Power Plant Project Finance Models (Deterministic and Stochastic) – Renewable, Conventional, Fossil, Nuclear and Waste Heat Recovery

=============================================

NEWS FLASH JUST NOW.

YOU CAN NOW ORDER AND PURCHASE DETERMINISTIC AND STOCHASTIC (MCS) PROJECT FINANCE MODELS IN UNITED STATES DOLLAR (USD).

HERE ARE SOME EXAMPLE DEMO (LOCKED) MODELS:

ADV Biomass Cogeneration Model3 (demo) – in PHP

ADV Biomass Cogeneration Model3 (demo) (USD)

ADV Biomass Cogeneration Model3_MCS (demo) – in PHP

ADV Biomass Cogeneration Model3_MCS (demo) (USD)

ADV Biomass Direct Combustion Model3 (demo) – in PHP

ADV Biomass Direct Combustion Model3 (demo) (USD)

ADV Biomass Direct Combustion Model3_MCS (demo) – in PHP

ADV Biomass Direct Combustion Model3_MCS (demo) (USD)

FOR OTHER POWER GENERATION TECHNOLOGIES, YOU MAY ORDER AND PURCHASE BY EMAIL AT:

energydataexpert@gmail.com

AND SPECIFY YOUR TYPE OF MODEL. YOU MAY ALSO INCLUDE IN YOUR EMAIL YOUR SAMPLE INPUTS SO I CAN IMMEDIATELY CUSTOMIZE YOUR MODEL FOR FREE.

=============================================

This is a special offer for the entire year of 2018. For the price of a deterministic model, you get a free copy of a stochastic model.

Our company (OMT Energy Enterprises) can also provide customization services to provide you with power plant project finance models with fixed inputs (deterministic models) as well as random inputs (stochastic models).

If you have an existing model which you want to be audited or upgraded to have stochastic modeling capability, you may also avail of our services at an hourly rate of USD200 per hour for a maximum of 5 hours of charge for customization services.

Use the deterministic model to determine project feasibility, e.g. given first year tariff, determine the equity and project returns (NPV, IRR, PAYBACK), or given the equity or project target returns, determine the first year tariff.

Use the stochastic model to determine project risks during the project development stage. By varying the estimation error on the independent variable (+10% and -10%) and conducting 1,000 random trials, this model will show the upper limit of the estimation error so that the dependent variables will converge to a real value (no error).

A pre-feasibility study has a +/- 15-20% estimation error on the independent variables using rule-of-thumb values.

A detailed feasibility study has a +/- 10-15% estimation error on the independent variables using reasonable estimates guided by internet research on suppliers of equipment.

A final bankable feasibility study has a +/- 5-10% estimation error on the independent variables using EPC contractor and OEM supplier bids.

In the case of fuel oil (bunker) genset, for instance, the estimation error on the independent variables should be less than +3% and -3% so that the dependent variables will converge to a real value.

The model inputs consist of the fixed inputs (independent variables) plus a random component as shown below (based on +/- 10% range, which you can edit in the Sensitivity worksheet):

1) Plant availability factor (% of time) = 94.52% x ( 90% + (110% – 90%) * RAND() )

2) Fuel heating value (GHV) = 5,198 Btu/lb x ( 90% + (110% – 90%) * RAND() )

3) Plant capacity per unit = 12.00 MW/unit x ( 90% + (110% – 90%) * RAND() )

4) Variable O&M cost (at 5.26 $/MWh) = 30.05 $000/MW/year x ( 90% + (110% – 90%) * RAND() )

5) Fixed O&M cost (at 105.63 $/kW/year) = 1,227.64 $000/unit/year x ( 90% + (110% – 90%) * RAND() )

6) Fixed G&A cost = 10.00 $000/year x ( 90% + (110% – 90%) * RAND() )

7) Cost of fuel = 1.299 PHP/kg x ( 90% + (110% – 90%) * RAND() )

8) Plant heat rate = 12,186 Btu/kWh x ( 90% + (110% – 90%) * RAND() )

9) Exchange rate = 43.00 PHP/USD x ( 90% + (110% – 90%) * RAND() )

10) Capital cost = 1,935 $/kW x ( 90% + (110% – 90%) * RAND() )

The dependent variables that will be simulated using Monte Carlo Simulation and which a distribution curve (when you make bold font the number of random trials) may be generated are as follows:

1) Equity Returns (NPV, IRR, PAYBACK) at 30% equity, 70% debt

2) Project Returns (NPV, IRR, PAYBACK) at 100% equity, 0% debt

3) Net Profit After Tax

4) Pre-Tax WACC

5) Electricity Tariff (Feed-in-Tariff)

The following deterministic (fixed inputs) and stochastic (random inputs using Monte Carlo Simulation) models may be downloaded for only USD1,400.

Before you can run the MCS model, you need to download first the Monte Carlo Simulation add-in and run it before running the MCS model:

MonteCarlito_v1_10

The models for renewable, conventional, fossil, nuclear, energy storage, and combined heat and power (CHP) project finance models are based on a single template so that you can prioritize which power generation technology to apply in a given application for more detailed design and economic study.

The models below are in Philippine Pesos (PHP) and may be converted to any foreign currency by inputting the appropriate exchange rate (e.g. 1 USD = 1.0000 USD; 1 USD = 50.000 PHP, 1 USD = 3.800 MYR, etc.). Then do a global replacement in all worksheets of ‘PHP’ with ‘XXX’, where ‘XXX’ is the foreign currency of the model.

RENEWABLE ENERGY

process heat (steam) and power

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-cogeneration-project-finance-model-ver-3/

bagasse, rice husk or wood waste fired boiler steam turbine generator

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-direct-combustion-project-finance-model-ver-3/

gasification (thermal conversion in high temperature without oxygen or air)

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-gasification-project-finance-model-ver-3/

integrated gasification combined cycle (IGCC) technology

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-igcc-project-finance-model-ver-3/

waste-to-energy (WTE) technology for municipal solid waste (MSW) disposal and treatment

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-waste-to-energy-wte-project-finance-model-ver-3-2/

waste-to-energy (WTE) pyrolysis technology

http://energydataexpert.com/shop/power-generation-technologies/advanced-biomass-waste-to-energy-wte-pyrolysis-project-finance-model-ver-3/

run-of-river (mini-hydro) power plant

http://energydataexpert.com/shop/power-generation-technologies/advanced-mini-hydro-run-of-river-project-finance-model-ver-3/

concentrating solar power (CSP) 400 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-concentrating-solar-power-csp-project-finance-model-ver-3/

solar PV technology 1 MW Chinese

http://energydataexpert.com/shop/power-generation-technologies/advanced-solar-photo-voltaic-pv-project-finance-model-ver-3-1-mw/

solar PV technology 25 MW European and Non-Chinese (Korean, Japanese, US)

http://energydataexpert.com/shop/power-generation-technologies/advanced-solar-photo-voltaic-pv-project-finance-model-ver-3-25-mw/

includes 81 wind turbine power curves from onshore WTG manufacturers

http://energydataexpert.com/shop/power-generation-technologies/advanced-onshore-wind-energy-project-finance-model-ver-3-copy/

includes 81 wind turbine power curves from offshore WTG manufacturers

http://energydataexpert.com/shop/power-generation-technologies/advanced-offshore-wind-project-finance-model-ver-3/

ocean thermal energy conversion (OTEC) technology 10 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-ocean-thermal-energy-conversion-otec-10-mw-project-finance-model-ver-3/

ocean thermal energy conversion (OTEC) technology 50 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-ocean-thermal-energy-conversion-otec-project-finance-model-ver-3-50-mw/

CONVENTIONAL, FOSSIL AND NUCLEAR ENERGY

geothermal power plant 100 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-geo-thermal-project-finance-model-ver-3/

large hydro power plant 500 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-large-hydro-impoundment-project-finance-model-ver-3/

subcritical circulating fluidized bed (CFB) technology 50 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-coal-fired-circulating-fluidized-cfb-project-finance-model-ver-3-50-mw/

subcritical circulating fluidized bed (CFB) technology 135 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-coal-fired-circulating-fluidized-bed-cfb-project-finance-model-ver-3-135-mw/

subcritical pulverized coal (PC) technology 400 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-pulverized-coal-pc-subcritical-project-finance-model-ver-3/

supercritical pulverized coal (PC) technology 500 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-pulverized-coal-pc-supercritical-project-finance-model-ver-3/

ultra-supercritical pulverized coal (PC) technology 650 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-pulverized-coal-pc-ultrasupercritical-project-finance-model-ver-3/

diesel-fueled genset (compression ignition engine) technology 50 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-diesel-genset-project-finance-model-ver-3-copy/

fuel oil (bunker oil) fired genset (compression ignition engine) technology 100 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-fuel-oil-genset-project-finance-model-ver-3-copy-2/

fuel oil (bunker oil) fired oil thermal technology 600 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-fuel-oil-thermal-project-finance-model-ver-3/

natural gas combined cycle gas turbine (CCGT) 500 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-natgas-fired-combined-cycle-gas-turbine-ccgt-project-finance-model-ver-3/

natural gas simple cycle (open cycle) gas turbine (OCGT) 70 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-natgas-fired-open-cycle-gas-turbine-ocgt-project-finance-model-ver-3/

natural gas thermal 200 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-natgas-fired-thermal-project-finance-model-ver-3/

petroleum coke (petcoke) fired subcritical thermal 220 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-petcoke-thermal-power-plant-project-finance-model-ver-3/

nuclear (uranium) pressurized heavy water reactor (PHWR) technology 1330 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-nuclear-power-phwr-project-finance-model-ver-3/

WASTE HEAT RECOVERY BOILER (DIESEL genset; GASOLINE genset; PROPANE, LPG or NATURAL GAS simple cycle)

combined heat and power (CHP) circulating fluidized bed (CFB) technology 50 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-coal-fired-cfb-combined-heat-and-power-chp-project-finance-model-ver-3/

diesel genset (diesel, gas oil) and waste heat recovery boiler 3 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-diesel-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

fuel oil (bunker) genset and waste heat recovery boiler 3 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-bunker-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

gasoline genset (gasoline, land fill gas) and waste heat recovery boiler 3 MW

http://energydataexpert.com/shop/power-generation-technologies/advanced-gasoline-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

simple cycle GT (propane, LPG) and waste heat recovery boiler 3 MW (e.g. Capstone)

http://energydataexpert.com/shop/power-generation-technologies/advanced-lpg-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

simple cycle GT (natural gas, land fill gas) and waste heat recovery boiler 3 MW (e.g. Capstone)

http://energydataexpert.com/shop/power-generation-technologies/advanced-natgas-fired-genset-combined-heat-and-power-chp-project-finance-model-ver-3/

Cheers,

Your energy technology selection and project finance modeling expert

 

Complete List of Deterministic and Stochastic Project Finance Models

January 5th, 2018 No Comments   Posted in financial models

Complete List of Deterministic (fixed inputs) and Stochastic (random inputs) Project Finance Models

=============================================

NEWS FLASH JUST NOW.

YOU CAN NOW ORDER AND PURCHASE DETERMINISTIC AND STOCHASTIC (MCS) PROJECT FINANCE MODELS IN UNITED STATES DOLLAR (USD).

HERE ARE SOME EXAMPLE DEMO (LOCKED) MODELS:

ADV Biomass Cogeneration Model3 (demo) – in PHP

ADV Biomass Cogeneration Model3 (demo) (USD)

ADV Biomass Cogeneration Model3_MCS (demo) – in PHP

ADV Biomass Cogeneration Model3_MCS (demo) (USD)

ADV Biomass Direct Combustion Model3 (demo) – in PHP

ADV Biomass Direct Combustion Model3 (demo) (USD)

ADV Biomass Direct Combustion Model3_MCS (demo) – in PHP

ADV Biomass Direct Combustion Model3_MCS (demo) (USD)

FOR OTHER POWER GENERATION TECHNOLOGIES, YOU MAY ORDER AND PURCHASE BY EMAIL AT:

energydataexpert@gmail.com

AND SPECIFY YOUR TYPE OF MODEL. YOU MAY ALSO INCLUDE IN YOUR EMAIL YOUR SAMPLE INPUTS SO I CAN IMMEDIATELY CUSTOMIZE YOUR MODEL FOR FREE.

=============================================

Your energy technology selection expert is pleased to announce that deterministic (fixed inputs) and stochastic (random inputs from Monte Carlo Simulation) are now available for all power generation technologies (renewable energy such as biomass, solar PV and CSP, wind, mini-hydro, ocean thermal and ocean tidal/current, and conventional energy such as large hydro, geothermal, and fossil energy such as oil diesel and oil thermal, natural gas simple cycle and combined cycle, coal thermal and clean coal technologies, nuclear energy, and energy storage and waste heat recovery and combined heat and power technologies).

You may download the following samples to try the advanced features of using fixed inputs and random inputs in order to manage your project risks:

Deterministic (fixed inputs) model: (USD 700):

Stochastic (random inputs from Monte Carlo Simulation) model (USD 1400):

Before you can run the MCS model, you need to download first the Monte Carlo Simulation add-in and run it before running the MCS model:

MonteCarlito_v1_10

Here is the complete list of deterministic and stochastic project finance models.

RENEWABLE ENERGY

1) process heat (steam) and power (cogeneration)

ADV Biomass Cogeneration Model3 (demo)

ADV Biomass Cogeneration Model3_MCS (demo)

2) bagasse, rice husk or wood waste fired boiler steam turbine generator

ADV Biomass Direct Combustion Model3 (demo)

ADV Biomass Direct Combustion Model3_MCS (demo)

3) gasification (thermal conversion in high temperature without oxygen or air

ADV Biomass Gasification Model3 (demo)

ADV Biomass Gasification Model3_MCS (demo)

4) integrated gasification combined cycle (IGCC) technology

ADV Biomass IGCC Model3 (demo)

ADV Biomass IGCC Model3_MCS (demo)

5) waste-to-energy (WTE) technology for municipal solid waste (MSW) disposal and treatment

ADV Biomass WTE Model3 (demo)

ADV Biomass WTE Model3_MCS (demo)

6) waste-to-energy (WTE) pyrolysis technology

ADV Biomass WTE Model3 – pyrolysis (demo)

ADV Biomass WTE Model3 – pyrolysis_MCS (demo)

7) run-of-river (mini-hydro) power plant

ADV Mini-Hydro Model3_NIA (demo)

ADV Mini-Hydro Model3_NIA_MCS (demo)

8) concentrating solar power (CSP) 400 MW

ADV Concentrating Solar Power (CSP) Model3 (demo)

ADV Concentrating Solar Power (CSP) Model3_MCS (demo)

9) solar PV technology 1 MW Chinese

ADV Solar PV 1 mw Model3 (demo)

ADV Solar PV 1 mw Model3_MCS (demo)

10) solar PV technology 25 MW European and Non-Chinese (Korean, Japanese, US)

ADV Solar PV 25 mw Model3 (demo)

ADV Solar PV 25 mw Model3_MCS (demo)

11) includes 81 wind turbine power curves from onshore WTG manufacturers

ADV Wind Onshore Model3 (demo)

ADV Wind Onshore Model3_MCS (demo)

12) includes 81 wind turbine power curves from offshore WTG manufacturers

ADV Wind Offshore Model3 (demo)

ADV Wind Offshore Model3_MCS (demo)

13) ocean thermal energy conversion (OTEC) technology 10 MW

ADV Ocean Thermal Model3_10 MW (demo)

ADV Ocean Thermal Model3_10 MW_MCS (demo)

14) ocean thermal energy conversion (OTEC) technology 50 MW

ADV Ocean Thermal Model3_50 MW (demo)

ADV Ocean Thermal Model3_50 MW_MCS (demo)

14) ocean current and tidal technology (30 MW) – this is a similar to an air wind turbine but under water with a turbine propeller (Taiwan has an operating prototype in Kuroshio and PNOC-EC is venturing into ocean current at the Tablas Strait).

ADV Tidal Current Model3_30 MW (demo)

ADV Tidal Current Model3_30 MW_MCS (demo)

 

CONVENTIONAL, FOSSIL AND NUCLEAR ENERGY

1) geothermal power plant 100 MW

ADV Geo Thermal Model3 (demo)

ADV Geo Thermal Model3_MCS (demo)

2) large hydro power plant 500 MW

ADV Large Hydro Model3 (demo)

ADV Large Hydro Model3_MCS (demo)

3) subcritical circulating fluidized bed (CFB) technology 50 MW

ADV Coal-Fired CFB Thermal Model3_50 MW (demo)

ADV Coal-Fired CFB Thermal Model3_50 MW_MCS (demo)

4) subcritical circulating fluidized bed (CFB) technology 135 MW

ADV Coal-Fired CFB Thermal Model3_135 MW (demo)

ADV Coal-Fired CFB Thermal Model3_135 MW_MCS (demo)

5) subcritical pulverized coal (PC) technology 400 MW

ADV Coal-Fired PC Subcritical Thermal Model3 (demo)

ADV Coal-Fired PC Subcritical Thermal Model3_MCS (demo)

6) supercritical pulverized coal (PC) technology 500 MW

ADV Coal-Fired PC Supercritical Thermal Model3 (demo)

ADV Coal-Fired PC Supercritical Thermal Model3_MCS (demo)

7) ultra-supercritical pulverized coal (PC) technology 650 MW

ADV Coal-Fired PC Ultrasupercritical Thermal Model3 (demo)

ADV Coal-Fired PC Ultrasupercritical Thermal Model3_MCS (demo)

8) diesel-fueled genset (compression ignition engine) technology 50 MW

ADV Diesel Genset Model3 (demo)

ADV Diesel Genset Model3_MCS (demo)

9) fuel oil (bunker oil) fired genset (compression ignition engine) technology 100 MW

ADV Fuel Oil Genset Model3 (demo)

ADV Fuel Oil Genset Model3_MCS (demo)

10) fuel oil (bunker oil) fired oil thermal technology 600 MW

ADV Fuel Oil Thermal Model3 (demo)

ADV Fuel Oil Thermal Model3_MCS (demo)

11) natural gas combined cycle gas turbine (CCGT) 500 MW

ADV Natgas Combined Cycle Model3 (demo)

ADV Natgas Combined Cycle Model3_MCS (demo)

12) natural gas simple cycle (open cycle) gas turbine (OCGT) 70 MW

ADV Natgas Simple Cycle Model3 (demo)

ADV Natgas Simple Cycle Model3_MCS (demo)

13) natural gas thermal 200 MW

ADV Natgas Thermal Model3 (demo)

ADV Natgas Thermal Model3_MCS (demo)

14) petroleum coke (petcoke) fired subcritical thermal 220 MW

ADV Petcoke-Fired PC Subcritical Thermal Model3 (demo)

ADV Petcoke-Fired PC Subcritical Thermal Model3_MCS (demo)

15) nuclear (uranium) pressurized heavy water reactor (PHWR) technology 1330 MW

ADV Nuclear PHWR Model3 (demo)

ADV Nuclear PHWR Model3_MCS (demo)

 

WASTE HEAT RECOVERY BOILER (DIESEL genset; GASOLINE genset; PROPANE, LPG or NATURAL GAS simple cycle)

1) combined heat and power (CHP) circulating fluidized bed (CFB) technology 50 MW

ADV Coal-Fired CFB Thermal Model3_50 MW CHP (demo)

2) diesel genset (diesel, gas oil) and waste heat recovery boiler 3 MW

ADV Diesel Genset and Waste Heat Boiler Model3 (demo)

3) fuel oil (bunker) genset and waste heat recovery boiler 3 MW

ADV Fuel Oil Genset and Waste Heat Boiler Model3 (demo)

4) gasoline genset (gasoline, land fill gas) and waste heat recovery boiler 3 MW

ADV Gasoline Genset and Waste Heat Boiler Model3 (demo)

5) simple cycle GT (propane, LPG) and waste heat recovery boiler 3 MW (e.g. Capstone)

ADV Propane Simple Cycle and Waste Heat Boiler Model3 (demo)

6) simple cycle GT (natural gas, land fill gas) and waste heat recovery boiler 3 MW (e.g. Capstone)

ADV Simple Cycle and Waste Heat Boiler Model3 (demo)

 

A simple user manual on how to use the deterministic and stochastic project finance models and user license information are found in the files below:

_How to run the Advanced Project Finance Models of OMT (ver 2)

_DISCLAIMER, CONTACT INFORMATION, PAYMENT DETAILS and NON-DISCLOSURE

Our company (OMT Energy Enterprises) can also provide customization services to provide you with power plant project finance models with fixed inputs (deterministic models) as well as random inputs (stochastic models).

If you have an existing model which you want to be audited or upgraded to have stochastic modeling capability, you may also avail of our services at an hourly rate of USD200 per hour for a maximum of 5 hours of charge for customization services.

Use the deterministic model to determine project feasibility, e.g. given first year tariff, determine the equity and project returns (NPV, IRR, PAYBACK), or given the equity or project target returns, determine the first year tariff.

Use the stochastic model to determine project risks during the project development stage. By varying the estimation error on the independent variable (+10% and -10%) and conducting 1,000 random trials, this model will show the upper limit of the estimation error so that the dependent variables will converge to a real value (no error).

A pre-feasibility study has a +/- 15-20% estimation error on the independent variables using rule-of-thumb values.

A detailed feasibility study has a +/- 10-15% estimation error on the independent variables using reasonable estimates guided by internet research on suppliers of equipment.

A final bankable feasibility study has a +/- 5-10% estimation error on the independent variables using EPC contractor and OEM supplier bids.

In the case of fuel oil (bunker) genset, for instance, the estimation error on the independent variables should be less than +3% and -3% so that the dependent variables will converge to a real value.

The model inputs consist of the fixed inputs (independent variables) plus a random component as shown below (based on +/- 10% range, which you can edit in the Sensitivity worksheet):

1) Plant availability factor (% of time) = 94.52% x ( 90% + (110% – 90%) * RAND() )

2) Fuel heating value (GHV) = 5,198 Btu/lb x ( 90% + (110% – 90%) * RAND() )

3) Plant capacity per unit = 12.00 MW/unit x ( 90% + (110% – 90%) * RAND() )

4) Variable O&M cost (at 5.26 $/MWh) = 30.05 $000/MW/year x ( 90% + (110% – 90%) * RAND() )

5) Fixed O&M cost (at 105.63 $/kW/year) = 1,227.64 $000/unit/year x ( 90% + (110% – 90%) * RAND() )

6) Fixed G&A cost = 10.00 $000/year x ( 90% + (110% – 90%) * RAND() )

7) Cost of fuel = 1.299 PHP/kg x ( 90% + (110% – 90%) * RAND() )

8) Plant heat rate = 12,186 Btu/kWh x ( 90% + (110% – 90%) * RAND() )

9) Exchange rate = 43.00 PHP/USD x ( 90% + (110% – 90%) * RAND() )

10) Capital cost = 1,935 $/kW x ( 90% + (110% – 90%) * RAND() )

The dependent variables that will be simulated using Monte Carlo Simulation and which a distribution curve (when you make bold font the number of random trials) may be generated are as follows:

1) Equity Returns (NPV, IRR, PAYBACK) at 30% equity, 70% debt

2) Project Returns (NPV, IRR, PAYBACK) at 100% equity, 0% debt

3) Net Profit After Tax

4) Pre-Tax WACC

5) Electricity Tariff (Feed-in-Tariff)

The models are in Philippine Pesos (PHP) and may be converted to any foreign currency by inputting the appropriate exchange rate (e.g. 1 USD = 1.0000 USD; 1 USD = 50.000 PHP, 1 USD = 3.800 MYR, etc.). Then do a global replacement in all worksheets of ‘PHP’ with ‘XXX’, where ‘XXX’ is the foreign currency of the model.

 

To purchase, email me at:

energydataexpert@gmail.com

 

You may pay using PayPal:

energydataexpert@gmail.com

or via bank/wire transfer:

====================

1) Name of Bank Branch & Address:

The Bank of the Philippine Islands (BPI)

Pasig Ortigas Branch

G/F Benpres Building, Exchange Road corner Meralco Avenue

Ortigas Center, PASIG CITY 1605

METRO MANILA, PHILIPPINES

2) Account Name:

Marcial T. Ocampo

3) Account Number:

Current Account = 0205-5062-41

4) SWIFT ID Number = BOPIPHMM

====================

Once I confirm with PayPal or with my BPI current account that the payment has been made, I will then email you the real (un-locked) model to replace the demo model you have downloaded.

Hurry and order now, this offer is only good until January 31, 2018.

Regards,

Your Energy Technology Selection and Project Finance Expert

 

 

Marcial Ocampo and his Major Achievements in Life

December 30th, 2017 No Comments   Posted in energy technology expert

Marcial Ocampo and his Major Achievements in Life

Marcial obtained his elementary education and graduated as the Grade 6 Valedictorian and continued his high school education at San Sebastian College in Manila and finished Year 4 Salutatorian.

Marcial studied at the University of the Philippines in Diliman Quezon City and finished his B.S. and M.S. Chemical Engineering degrees. He also took the Chemical Engineering Licensure Exam in August 1973 and passed as 2nd Placer with an 87.75% rating. He became a British Council scholar at the University of Leeds, UK, where he finished his M.S. Combustion & Energy and thesis in just one year.

Marcial joined the Department of Energy as a PNOC-PETRON-hire seconded as Section Chief of the Transport, Buildings & Machinery Section under the Conservation Division of DOE and conducted various energy audits of major industries throughout the country. Later on, when the DOE was abolished and replaced by the Ministry of Energy (MOE), Marcial transferred to the Petron Bataan Refinery (PBR) as Computer Systems Group head and Linear Programming (LP) model custodian. He retired from PETRON and then went on to work for PETRONAS Energy Philippines Inc. (PEPI) as EDP & Budget Manager and Executive Director of 50+ staff PCIERD-DOST upon the invitation of the DOST Secretary.

Marcial went into business providing computer hardware and General Ledger (GL) Accounting System that provided real-time transactions, month-to-date and year-to-date Income & Expense Statement, Balance Sheet Statement and Trial Balances which automated the preparation of Financial Reports for submission to SEC and BIR, as well as shareholders of any company. The GL was utilized in a number of lending investor companies that benefited from having a real-time accounting system.

Marcial was a Senior Technical Services Manager at First Gen Corporation where he was introduced to power plant modeling and simulation, and later, into project finance modeling that determines the economic feasibility of power plant projects and alternatives, and to value the privatization price of an asset of NPC for bidding to interested buyers.

He prepared a compendium of all power generation technologies (renewable, conventional, fossil, nuclear, energy storage) in power point presentation format and developed a template project finance model to calculate the first year tariff (or feed-in-tariff in the case of renewable energy), equity and project returns (IRR, NPV, PAYBACK), debt service cover ratio (DSCR), benefit-to-cost ratio (B/C), and other financial ratios to assess financial risks of the project during the planning stage of the project cycle. In addition to this deterministic (fixed) template, he prepared a version with stochastic (probabilistic) analysis using Monte Carlo Simulation (MCS).

The MCS model varied by +/- 10% the independent inputs in a random manner such as electricity tariff, availability factor, fuel heating value, debt ratio, plant capacity, all-in (overnight) capital cost, variable O&M cost, fixed O&M cost, cost of fuel, efficiency or plant heat rate and exchange rate. The MCS dependent output consists of a probabilistic distribution curve of equity and project returns (IRR, NPV, PAYBACK), net profit after tax, pre-tax WACC and electricity tariff (or feed-in-tariff for renewable energy). The shape of the distribution curve and relative position of the average value of the dependent variable is indicative of project risk.

He also prepared a manual on “How to Design a Mini-hydro Power Plant” and developed a model to “Optimize Penstock Diameter given its Thickness, Strength, Diameter, Capital and Operating Costs, Cost of Electricity and Friction Loses”.

Marcial is civic mined and patriotic, and helped the government thru the DOE in the “Crude Oil Price Hike to USD100 per barrel Impact Study in 2008” and the “Oil Price Review Study of 2012” where he developed the Oil Pump Price Calculation Excel Model to predict changes to pump price or absolute pump price given changes in FOB or MOPS import cost, ocean freight and insurance costs, exchange rate, gov’t excise taxes and port charges, brokerage and arrastre charges, VAT on importation activities, oil company margin, pumping and transshipment costs, hauling costs, dealer margin, and VAT on local activities. The pump price model can be downloaded from the DOE Website.

Later on, he was called upon by the DOE to assist in the 2012 Independent Oil Price Committee (IOPRC) review of the reasonableness of oil pump price (absolute and adjustments). His Oil Pump Price Calculation (OPPC) Model was adopted and posted in the DOE website which was later used very recently in the 2016 Oil Price Impact Study of an oil industry sector position paper submitted to the Philippine Congress.

He assisted a foreign consultant prepare a historical analysis of the short-run marginal cost (SRMC = variable O&M cost + fuel cost) and long-run marginal cost (LRMC = annualized capital cost + fixed O&M cost + regulatory cost + SRMC) for all power plants in the country in order to assist a client prepare his competitive bid offers in the Wholesale Electric Spot Market (WESM) as well as prepare their capacity expansion plans.

Marcial also assisted the Philippine Congressional Committee on Dam Safety in improving the Dam Water Release Protocol by providing Dam Water Release Simulation Model to predict dam height (meters) and volumetric release rate (cubic meters per second) every hour of the simulation given the initial dam height and volume, power generation and water discharge, dam strapping table (volume vs. height), rainfall data (mm per hour) and area of the dam watershed and upstream drainage area with rainfall data or equivalent upstream dam release rate. This model answered the question: “How many hours and rate of pre-emptive discharge is necessary to increase a dam’s storage capacity in order to have sufficient space to absorb an incoming storm and thus avoid a catastrophic dam spill that will inundate downstream low land areas”. The model accurately predicted the volumetric release rate at the height of the storm when the dam spilling level was breached. It also recommended how many days and rate of pre-emptive discharge is needed to avoid the dam spill during the height of Typhoon “Ondoy” and “Peping” that inundated the provinces of Pangasinan and Tarlac resulting in PhP 40 billion of damage and lost properties and lives.

He also assisted the economic team that studied the proposed excise tax increase in gasoline, diesel, kerosene, LPG, fuel oil, lubes & greases, and other petroleum products such as waxes & petrolatums to predict the price disturbance to be inputted into the input-output matrix of the Philippine economy to predict impact on GDP, inflation and employment.

Marcial also developed a Delivered Coal Price Calculation (DCPC) Model to calculate the impact of increasing the excise tax on coal from the current level of 10.00 PHP/MT to 300.00 PHP/MT, and to use his template project finance model for coal-fired power plants (PC, CFB, subcritical, super-critical and ultra-super-critical) to determine the impact of the excise tax increase in equity and project returns (IRR, NPV, PAYBACK) or determine the first year tariff to meet target equity and project IRR.

Marcial continued to develop his overall skills in energy & power and became an International Consultant at the United Nations Development Programme (UNDP) and travelled to Jakarta, Beijing, Shanghai, New Delhi and Chennai conducting mid-term and full-term project evaluation of wind diesel hybrid, 3rd generation fuel cell bus, biomass energy and India tea manufacturing.

Later, Marcial applied his energy & power expertise to join Sinclair Knight Mertz (SKM) as Senior Power Generation Engineer as part of the “Energy City”, an On-shore LNG Refrigerated Terminal and Re-gassing Facility project team at Limay, Bataan proposed by Atlantic Gulf & Pacific Company (AG&P). This project has been revived recently by the Araneta energy group.

Marcial then joined the SMC GLOBAL POWER HOLDINGS CORPORATION as Energy & Power Consultant and finished a number of feasibility studies for an industrial park, coal-fired power plant using clean coal technology (CFB) and a coal mine project where he converted the coal-mine production plan into a project finance model to determine the cost of delivered coal to another SMC power plant in Mindanao. He provided in-house financial modeling expertise on solar PV, wind, mini-hydro, large hydro, natural gas-fired CCGT and coal-fired clean coal technology (CFB).

Currently, Marcial is finishing the terminal (final) project evaluation of a UNDP-funded project being implemented by the Philippine Climate Change Commission (CCC) on “Low Emission Capacity Building (LECB) Project for the Philippines”.

Marcial is also developing a 50 MW Grid-Connected Solar PV Power and Energy Storage Project in a 50ha project site in Central Luzon in a vast titled estate to provide alternative income to the land owner. He will be soliciting shortly proposals from interested industrial partners to co-develop the project and said partner will provide the technical and financial know-how that will provide beneficial interest to the land owner by way of land rental and share of net income after tax.

Marcial is now available for new endeavors this coming New Year – January 1, 2018.

Contact Details:

Marcial T. Ocampo

+63-9156067949 (GLOBE mobile)

+63-2-9313713 (PLDT home landline)

mars_ocampo@yahoo.com (email)

energydataexpert@gmail.com (email)

 

The Thematic Resume/CV of Marcial Ocampo – the Energy Technology Expert

October 30th, 2017 No Comments   Posted in energy expert

The Thematic Resume/CV of Marcial Ocampo – the Energy Technology Expert

To download the thematic resume/CV of Marcial Ocampo, kindly click on the link below:

 

_Marcial Ocampo_CV_October 2017

 

Hope I can be of help and contribute to the growth of your company.

Regards,

Marcial Ocampo

63-915-6067949 (GLOBE mobile)

 

OMT ENERGY ENTERPRISES -Now Open for Business

October 3rd, 2017 No Comments   Posted in energy expert

OMT ENERGY ENTERPRISES – Now Open for Business

Yes, we are pleased to announce that OMT Energy Enterprises is now open for business.

OMT ENERGY can conduct in-house seminars, workshops and one-on-one training on power generation technology (description, history, capital and operating cost, power plant modeling, and economic and financial analysis to determine the feasibility of each technology).

Later on, OMT ENERGY will assist investors set up energy and power companies, register and secure permits, licenses and incentives from relevant authorities.

The cost of conducting in-house seminar, customizing project finance models, preparing power demand, energy demand, GDP and price forecasts, and feasibility studies  can be negotiated by contacting Marcial Ocampo at:

mars_ocampo@yahoo.com

or

energydataexpert@gmail.com

or

63-915-6067949 (GLOBE mobile)

Marcial can also be the chief executive officer (CEO, President), chief financial officer (CFO), chief operating officer (COO) or chief technical officer (CTO) or head of any major department in your company.

 

Following are services offered by OMT ENERGY:

Project Finance Modeling and Feasibility Study of any business enterprise

Supply/Demand/Price Forecasting with Monte Carlo Simulation (MCS)

Deterministic and Stochastic Project Finance Modeling with MCS

Integrated Wind Speed, Power Curves, Capacity Factor and Project Finance with MCS

Conventional and Renewable Energy Statistics (historical, forecast)

Renewable and Conventional Energy Supply/Demand and Tariff Studies

Renewable Energy Resource Assessment (wind, solar, mini-hydro) and Optimal Configuration

Clean Coal and Conventional Coal Project Finance and Feasibility Studies

Petroleum Supply/Demand and Pump Price Studies

LNG Market Study and Fuel Substitution Studies

Biomass Power Barrier Removal

Mini-hydro Power Design, Costing, Modeling and Feasibility Studies

Tri-Generation (Power, Heat, Cooling) Optimization & Financial Modeling

Mid-Term and Final Term Review of WB, UNDP and ADB Projects

Energy & Business Development

Oil, Energy & Electricity Pricing

Feed-In Tariff Calculation for Renewable Energy/Electricity

Refinery, Utilities, Distribution & Transportation Optimization

Refinery & Petrochem Process Modeling & Optimization

Optimal Power & Load Dispatch

Project Finance, Power Plant Modeling & Financial Modeling

Market, Technical & Economic Feasibility Studies

Dam Simulation Modeling & Studies

General Ledger Accounting System

Loans Processing System

Business Modeling & Corporate Planning

Oil Industry Retail & Distribution Expansion Studies

Small Scale Project Finance Models (diesel, hydro, biomass, wind, solar, cogeneration, hybrid-RE)

Large Scale Project Finance Models (oil, coal, geothermal, gas turbines, combined cycles, nuclear)

 

OMT Energy Enterprises

OMT Energy Enterprises is owned and headed by Marcial Ocampo.

Marcial has prepared the levelized cost of electricity (LCOE) of all power generation technologies and existing power plants in the country so that a merit order load dispatch schedule (least expensive to most expensive) is prepared to determine the marginal power plant and clearing price for WESM.

Marcial was engaged full-time by SMC GLOBAL POWER HOLDINGS from Oct 1, 2014 to Sep 30, 2017 to provide energy consultancy services in energy & power, financial modeling, optimization for least cost capacity expansion planning, optimal load dispatch, and Monte Carlo Simulation (MCS) of supply and demand studies, forecasting WESM clearing prices, and MCS of project finance models to determine distribution of NPV, IRR, and PAYBACK of equity and project returns, net present value of income after tax discounted with pre-tax WACC, the pre-tax WACC, electricity tariff, annual generation and average capacity factor.

He is an Energy & Power Generation Technology Selection and Business Development Consultant for oil, gas, coal, geothermal, hydro, and renewable energy technologies such as biomass, solar, wind, mini-hydro, ocean thermal and ocean wave, energy storage and clean energy technologies. He conducts power and energy market studies, supply & demand studies, energy forecasts & projections, pre-feasibility studies, power plant modeling, project finance modeling and feasibility studies. He also optimizes load dispatch, least cost capacity expansion planning using linear programming (LP) models.

Marcial provides optimization and LP models for maximizing refinery value (product sales less crude cost, refining cost, refinery fuel, power and utilities, and other costs), transportation optimization such as petroleum product transshipment, product formulation such as least cost feed-mix component blending, and optimizing manufacturing processes.

From your Energy Technology Expert

Marcial Ocampo

Career History of Marcial T. Ocampo

September 8th, 2017 No Comments   Posted in career history

Career History of Marcial T. Ocampo

Areas of Interest:

Energy & Power Generation

Linear Programming Optimization (Real and Mixed Integer LP)

Monte Carlo Simulation and Project Risk

Energy, Power and Fuel Supply & Demand Forecasting

Project Finance and Financial Modeling

Econometric Modeling (GDP, Price, Inflation, Employment)

Technical, Economic and Financial Feasibility Studies

Power Plant Management, Planning, Finance, Operations, Technical Services

WB and UNDP Renewable Energy, Barrier Removal and Project Evaluation

Education:

Elementary – Grade 6 – Valedictorian

High School – Year 4 – Salutatorian

College – B.S. Chemical Engineering, University of the Philippines

2nd Place – Chemical Engineering Board Exam – 87.75%

Masters – M.S. Chemical Engineering, University of the Philippines

Masters – M.S. Combustion & Energy, Leeds University, United Kingdom

Work Experience:

Jun 2014 – Present

Independent Advisor (see above expertise)

Jun 2014 – Present

Energy Technology Selection Expert, Project Finance Modeling, Optimization, Monte  Carlo Simulation at OMT Energy Enterprises

Oct 2014 – Present

Energy and Power Consultant at SMC GLOBAL POWER HOLDINGS CORPORATION

Mar 2013 – Sep 2017

Senior Power Generation Engineer at Sinclair Knight Mertz (SKM)

Sep 2012 – Nov 2012

Comprehensive Feasibility Study for Coal-Fired CFB Power Plant Project at Test Consultants, Inc.

Aug 2012 – Sep 2012

International Energy Consultant for Final Review of ENERGY CONSERVATION at UNDP-India

Feb 2012 – Sep 2012

Technical Working Group (TWG) Member, Independent Oil Industry Pricing Review Committee (IOPRC) at Philippine Department of Energy (Pump Price Calculation Model)

Feb 2012 – Jul 2012

CDM Consultancy to Wind Energy Farms of PhilCarbon at PhilCarbon Inc.

Jan 2012 – Jan 2012

External Evaluation of ESMAP 2007-2011 at Baastel

Dec 2011 – Dec 2011

International Energy Consultant / Expert Evaluator at UNDP-China

Sep 2011 – Oct 2011

Project Finance & Financial Modeling Consultant at Hitachi Asia Ltd

May 2011 – Jul 2011

Technical, Market, Economic and Feasibility Study Consultant at PNOC-EC

Apr 2011 – May 2011

Biomass Power Project Mid-Term Review Consultant at UNDP-India

Mar 2011 – Apr 2011

Natural Gas and LNG Market Study Consultant at Confidential Company

Jan 2011 – Mar 2011

Wind Energy Resource Assessment and Feasibility Study of 2 Sites at Constellation Energy Corporation

Nov 2010 – Nov 2010

Fuel Cell Hybrid Bus Demonstration at UNDP-China

Aug 2010 – Sep 2010

Wind-Diesel Hybrid Power Generation at UNDP Indonesia

Jan 2010 – Jan 2010

Presentor of Feed-In Tariff Calculation Procedure at DOE-NREB

Dec 2009 – Dec 2009

Seminar Lecturer & Consultant – Biomass Feed-In Tariff at Biomass Alliance & Phil. Sugar Mfg. Ass. (PSMA)

Dec 2009 – Dec 2009

Seminar Speaker, Feed-in Tariff Calculation at Energy Practitioners Association of the Philippines

Nov 2009 – Dec 2009

Expert on Dam Operation & Safety at House of Representatives of the Philippines (Pre-emptive discharge and dam water release simulation to avoid dam spill before incoming storm)

Jul 2009 – Oct 2009

Consultant for Greenfield Natural Gas CCGT Power Plant at PNOC Exploration Corporation

Jun 2009 – Jun 2009

Consultant for Lignite Coal Fired CFB Power Plant at PNOC Exploration Corporation

Oct 2008 – Nov 2008

CME Biodiesel Technical & Economic Consultant at Rapco CME Biodiesel

Jun 2008 – Jun 2008

Oil Pricing Expert & Consultant at Philippine Department of Energy

Apr 2008 – Apr 2008

Clean Coal Technology Consultant at E-Power

Jun 2007 – Dec 2007

Qualified Third Party (QTP) Consultant for Rural Electrification at World Bank & Philippine Department of Energy (Biomass-Diesel Hybrid Power Generation and Electricity Tariff Setting)

May 2007 – Dec 2007

Liquid Fuels & Additive Consultant at Octagon Chem Oil Corporation

Aug 2007 – Sep 2007

Financial Modeling Consultant at Harty Philippines, Inc.

Feb 2001 – Nov 2006

Senior Technical Services Manager at First Gen Corporation (Combined Cycle Gas Turbine, Pulverized Coal, and Large Dam power generation)

Sep 1999 – Jan 2001

Executive Director at Philippine Council for Industry & Energy Research & Development (PCIERD) of the Department of Science & Technology (DOST)

Jun 1997 – Jan 1998

EDP, Budget & Planning Manager at Petronas Energy Philippines, Inc.

Jun 1993 – May 1997

President & General Manager at Real Time Management Systems (Crude Oil Refinery Operation and Finished Product Distribution optimization with Linear Programming)

Nov 1990 – May 1993

Petron MIS Coordinator at PNOC-Petron Corporation (Nationwide computerization)

Jun 1983 – Nov 1990

Head, Computer Systems Group at PNOC-Petron Bataan Refinery (Refinery computerization and custodian of the Refinery Linear Programming model)

Apr 1978 – Jun 1986

Section Chief for Transport, Building & Machineries at Bureau of Energy Utilization, Philippine Department of Energy

Jun 1974 – Mar 1978

Lecturer at College of Engineering, University of the Philippines

=======

If you are interested in his services, email him quickly as he will be available by October 1, 2017:

mars_ocampo@yahoo.com

energydataexpert@gmail.com

or call:

63-915-6067949 (GLOBE mobile)

 

Marcial Ocampo and his Major Achievements in Life and Career Advancement

June 21st, 2017 No Comments   Posted in energy expert

Marcial Ocampo and his Major Achievements in Life and Career Advancement

Marcial obtained his elementary education and graduated as the Grade 6 Valedictorian and continued his high school education at San Sebastian College in Manila and finished Year 4 Salutatorian.

Marcial studied at the University of the Philippines in Diliman Quezon City, Philippines and finished his B.S. and M.S. Chemical Engineering degrees and worked part-time as personal driver of a college professor and College of Engineering Instructor. He also took the Chemical Engineering Licensure Exam in August 1973 and passed as 2nd Placer with an 87.75% rating. He became a British Council scholar at the University of Leeds, United Kingdom, where he finished his M.S. Combustion & Energy and thesis in just one year. More »

Reducing Traffic on EDSA – applying science and sound engineering principles

September 18th, 2016 No Comments   Posted in EDSA traffic

Reducing Traffic on EDSA – applying science and sound engineering principles

The HPG and MMDA solution to reducing EDSA stand-still traffic is making things worse. Putting those concrete and plastic dividers along EDSA is creating too much skin friction similar to water flow inside a water hose and pipe. A parallel plate inside a pipe is known in engineering to create skin friction that prevents the faster flow of the liquid inside the pipe.

That is the same phenomena experienced now along the entire stretch of EDSA. The more barriers you put up, the more traffic you create. More »

The Ultimate Solution to High Electricity Costs in the Philippines

August 22nd, 2016 No Comments   Posted in cost of power generation

The Ultimate Solution to High Electricity Costs in the Philippines

Further to my previous blog on How to Reduce Electricity Costs, the following discussion will present the Ultimate Solution to reducing Philippine electricity costs – the highest rate in Asia.

The yardstick for comparing the various technologies of unequal lifetimes and capacity is the levelized cost of energy (LCOE) also called the long run marginal cost (LRMC) which is the sum of annualized capital cost, fixed O&M, variable O&M and fuel/lube costs. On the other hand, the short run marginal cost (SRMC) is the sum of all variable O&M and fuel/lube costs. The LRMC is used in long-term least cost capacity expansion planning by the DOE while the SRMC is used in short-term optimal dispatch such as the WESM hourly dispatch by the market operator (PEMC).

The LCOE or LRMC and SRMC may be computed using a simple cost formula developed by US NREL or by yours truly (RP MTO price formula – the grossed-up US NREL cost formula that considers depreciation and income tax rate). Download this file for data and formulas:

Cost of power generation technologies

However, in this presentation below, I used the more accurate project finance model similar to the NREB project finance model template approved by the ERC to calculate the first year tariff, LRMC, SRMC, equity and project IRR, NPV and PAYBACK, and DSCR (min, ave, max).

More »

Why Philippine Electricity Reserves are always not adequate?

August 5th, 2016 No Comments   Posted in optimal load dispatch

Why Philippine Electricity Reserves are always not adequate?

This is a question perennially asked by ordinary citizens, businessmen, investors, and now legislators. It is happening as if no one is minding the store.

Well, I have some ideas that will open our eyes on the real score.

We lack power reserves, the difference between peak demand and dependable capacity. The key word is dependable capacity, and not installed capacity.

Adequate power reserves are needed so that in the event that the largest single unit in the grid goes off-line, these back-up power reserves kick in with sufficient ramp-up rate to prop-up the supply immediately so that the grid remains stable and does not go into load-dropping mode to equalize supply with demand. More »

Concentrating Solar Power (CSP) – Solar Thermal Power Generation Technology Model

Concentrating Solar Power (CSP) – Solar Thermal Power Generation Technology Model

Your energy technology selection expert has developed a CSP Project Finance Model for use by CSP project developers.

It can help you prepare the feasibility study and design or optimize the various options to give you the lowest Levelized cost of energy (LCOE).

Given inputs on installed unit capacity, number of units, capacity factor, all-in capital cost $/kW, fixed O&M cost $/kW/year and variable O&M cost $/MWh, you can calibrate the model to meet your annual generation and determine first year tariff, short-run marginal running cost SRMC and long-run marginal running cost LRMC (also known as LCOE). More »

Coal Thermal and Clean-Coal Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in power generation

Coal Thermal and Clean-Coal Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for the geothermal power generation technology using energy stored on the earth’s crust. Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Solid fossil fuel such as coal (lignite, sub-bituminous, bituminous, etc.) are available in large quantities in many places around the world and will provide a cheap source of fuel to generated power in base-load coal-fired power plants using circulating fluidized bed (CFB) and the newer pulverized coal (PC) technologies such as super-critical and ultra-super-critical technologies.

More »

Nuclear Energy Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in power generation

Nuclear Energy Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for a nuclear power generation technology. Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Nuclear Energy stored on the earth’s crust during its creation, and its extraction and concentration using various methods such as chemical extraction and centrifuging has provided a great transition fuel for mankind as the world bids time to shift form fossil fuels that have limited life times (e.g. oil to be exhausted in 60 years, natural gas also in the same life time as oil, and coal to be consumed in 250 years) to unlimited renewable energy from the sun (solar PV, solar thermal, hydro, pumped storage, wind, ocean thermal, wave energy). The use of nuclear power has provided many countries with a cheap source of energy and power, though a number of safety issues and actual nuclear mishaps has occurred, notable of which is the Chernobyl in USSR and Fukushima in Japan.

More »

Combined Cycle and Simple (Open) Cycle Gas Turbine Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in power generation

Combined Cycle and Simple (Open) Cycle Gas Turbine Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for the various natural gas-fired power generation technologies. Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Natural gas is a clean fuel that may be used in simple cycle (open cycle or Brayton cycle) gas turbines such as those used in jet engines, or when the waste heat is recovered in a heat recovery boiler (Rankin cycle). This two cycles (Brayton and Rankin) combine to raise the overall thermal efficiency from 33% to over 54%.

More »

Geothermal Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in power generation

Geothermal Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for the geothermal power generation technology using energy stored on the earth’s crust. Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Energy stored on the earth’s crust during its creation, and its continued regeneration from nuclear reactions inside the earth to heat water that percolates into the earth’s crust is a continuing source of saturated and superheated steam which can be used to drive steam turbines in single and double flash steam cycles (but releasing the spent geothermal steam to the atmosphere), or using a binary fluid to capture the heat from geothermal fluids without the attendant problem of treating the spent geothermal fluid other than re-injecting it back to mother earth in an end-less cycle.

More »

Steam Cycle and Rankin Cycle Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in power generation

Steam Cycle and Rankin Cycle Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for the steam cycle and Rankin cycle power generation technology using a variable of energy sources and fossil fuels such as  oil thermal (bunker oil) and gas thermal (natural gas). Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Among the oldest and most versatile power generation technology is based on the steam cycle, also called the Rankin cycle, which consists of a heating source to convert a liquid such as water into saturated steam or superheated steam to drive a steam turbine, and recover the spent steam in the condenser to be pre-heated in a steam drum and then converted to steam in a boiler and superheated further in the super heater of the Rankin cycle.

More »

Reciprocating (Piston) Engine Project Finance Model Template (Financials Tab) – free demo

Reciprocating (Piston) Engine Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for reciprocating (piston) engine power generation technology. Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Reciprocating diesel engine (using diesel oil and bunker fuel oil) is based on the compression ignition (CI) thermodynamic cycle while the reciprocating gasoline engine (using gasoline, petrol and natural gas) is based on the spark ignition (SI) thermodynamic cycle.

More »

Hydro Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in hydro power

Hydro Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for hydro electric power. Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

More »

Solar Photo Voltaic (PV) Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in solar PV power

Solar Photo Voltaic (PV) Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed solar PV energy. Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Solar Photo Voltaic (PV) farms are the present darling in the RE industry. It is the fastest RE technology that can be built in the shortest possible time, and with declining cost of producing and maintaining solar PV panels, a large number of project developers have ventured into solar.

More »

Wind Energy Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in wind energy and power

Wind Energy Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for on-shore and off-shore wind energy farm (non-thermal renewable energy). Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

More »