How to use the advanced (regulator) fuel oil thermal power plant project finance model

July 24th, 2017 No Comments   Posted in financial models

How to use the advanced (regulator) fuel oil thermal power plant project finance model

Finding an easy-to-use project finance model for a fuel oil thermal (steam cycle) power plant with built-in data is sometimes difficult as some models don’t have the sophistication of a regulator template model as well as the ease of using the model and viewing immediately the results of a sensitivity change in the inputs to the model.

This is now made easy because the Input & Assumptions worksheet (tab) has combined all the input and output information in a single worksheet and placing the reports in other worksheets such as Tariff Breakdown, Construction Period, Operating Period, Financial Reports and Levelized Tariff.

Following is a sample case study on a fuel oil thermal power plant. From the preliminary design and cost estimates, the top management would want to know if the business idea of going into fuel oil thermal power development, construction and operation is worth the effort – is it feasible and what are the economic and financial returns for risking capital.

Here are the inputs and outputs of the advanced template model from OMT ENERGY ENTERPRISES:

——————————————————————————————-

Here are the summary of inputs:

all-in capital cost (overnight cost) = 1,000 $/kW (target cost)

EPC cost portion = 641 $/kW (computed by model)

refurbishment cost = 5% of EPC cost on the 10th year (overhaul)

fixed O&M cost = 30.00 $/kW/year (target cost) = 8,157.41 ‘000$/unit/year (computed by goal seek)

variable O&M cost = 10.00 $/MWh (target cost) = 53.90 ‘000$/MW/year (computed by goal seek)

general admin cost = 100.00 ‘000$/year (target cost)

 

Thermal power plant inputs:

Gross heating value of fuel oil thermal fuel = 19,500 Btu/lb

Plant heat rate = 8,979 Btu/kWh (38.00% thermal efficiency)

Density of diesel fuel = 0.966 kg/Liter

Cost of fuel oil thermal fuel = 25.00 PhP/Liter = 514.54 USD/MT

 

Lube oil consumption rate = 5.4 gram/kWh

Density of lube oil = 0.980 kg/Liter

Cost of lube oil = 200.00 PhP/Liter

 

capacity = 300.00 MW/unit x 1 unit = 300.00 MW

 

Plant Availability Factor, %                                    70.18% (computed by goal seek)

Load Factor, %                                                     95.00% (assumed)

allowance for losses & own use, %                       10.00% (assumed)

Net Capacity Factor after losses & own use, %    60.00% (target net capacity factor)

Degradation rate, %                                               0.5%

 

construction period = 24 months (start 2014)

operating period = 20 years (start 2016)

 

Capital cost estimation assumptions and % local cost (LC):

Power plant footprint (ha)                                   30.00

Cost of purchased land (PhP/sqm)                    25.00 (no land lease)

Land cost, $000 $149.11 100.0%
Equipment Cost ex BOP, Transport ($000/MW) $510.98 11.4%
Insurance, Ocean Freight, Local Transport, % of Equipment Cost 4.5% 100.0%
Balance of Plant (BOP), % of Equipment Cost 21.0% 100.0%
Transmission Line Distance (km) 10.00
T/L Cost per km, 69 kV ($000/km) $40.00 100.0%
Switchyard & Transformers ($000) $786.21 100.0%
Access Roads ($000/km) $181.82 100.0%
Distance of Access Road (km) 10.00
Dev’t & Other Costs (land, permits, etc) (% of EPC) 15.0% 100.0%
VAT on importation (70% recoverable) 12% 100.0%
Customs Duty 3% 100.0%
Initial Working Capital (% of EPC) 11.0% 100.0%
Contingency (% of Total Cost) 4.0% 49.2%

 

Capital cost breakdown (‘000$): (computed values)

Uses of Fund:
   Land Cost $149
   EPC (Equipment, Balance of Plant, Transport) $192,385
   Transmission Line Interconnection Facility $400
   Sub-Station Facility $786
   Development & Other Costs (Civil Works, Customs Duty) $35,808
   Construction Contingency $8,970
   Value Added Tax $16,852
   Financing Costs $23,497
   Initial Working Capital $21,162
Total Uses of Fund – $000 $300,009
                                 – PhP 000 15,089,572
Sources of Fund:
   Debt $210,006
   Equity $90,003
Total Sources of Fund $300,009

 

Local and Foreign Cost Components (from individual cost item):

Local Capital = 49 %

Foreign Capital = 51 %

 

Balance Sheet Accounts:

Receivables = 30 days of revenue

Payables    = 30 days of expenses

Inventory    = 60 days of consumables

 

Imported Capital Equipment: (fossil fuel)

Customs duty = 3%

Value added tax (VAT) = 12%

VAT recovery = 0% on 5th year of operation

 

Type of input / output VAT = 1 (with VAT)

Type of incentives = 1 (NO incentives)

 

Tax Assumptions:

Income Tax Holiday (yrs) 0
Income Tax Rate % (after ITH) 30%
Property tax (from COD) 2.0%
Property tax valuation rate (% of NBV) 80%
Local Business Tax 1.0%
Government Share (from COD) 0.0%
ER 1-94 Contribution (PhP/kWh) 0.01
Withholding Tax on Interest (Foreign Currency) – WHT 10%
Gross Receipts Tax on Interest (Local Currency) – GRT 1%
Documentary Stamps Tax (DST) 0.5%
PEZA Incentives (% of gross income) – 0% / 5% 0%
Royalty 0%

 

Capital Structure:

Equity Share = 30% at 14.00% p.a. target equity returns (IRR)

Debt Share = 70% (49% local, 51% foreign)

 

Debt Terms:

Local & Foreign Upfront & Financing Fees 2.00%
Local & Foreign Commitment Fees 0.50%
Local All-in Interest Rate excluding tax 10.00%
Local Debt Payment Period (from end of GP) (yrs) 10
Foreign All-in Interest Rate excluding tax 8.00%
Foreign Debt Payment Period (from end of GP) (yrs) 10
Local and Foreign Grace Period from COD (mos) 6
Local and Foreign debt Service Reserve (mos) 6

 

Foreign Exchange Rate:

Base Foreign Exchange Rate (PhP/US$) – 2013            48.0000 (construction)

Forward Fixed Exchange Rate (PhP/US$) – 2014           50.2971 (operating)

 

Escalation (CPI):

Annual Local CPI – for OPEX      0.0%            4.0%     for CAPEX (to model construction delay)

Annual US CPI – for OPEX           0.0%            2.0%     for CAPEX (to model construction delay)

 

Weighted Average Cost of Capital:

WACC = 10.49% p.a.

WACC pre-tax = 11.98% p.a.

WACC after-tax = 8.39% p.a.

 

Results of Financial Analysis:

 

First year tariff (Feed-in-Tariff) = 8.65344 P/kWh = 0.17205 USD/kWh

(at zero equity NPV)

 

Short run marginal cost (SRMC) and Long run marginal cost (LRMC):

Item PhP 000 PhP/kWh
Fuel      180,407,888 6.00598
Lubes              36,781 0.00122
Var O&M        16,750,178 0.55763
Total      197,194,846 6.56484
MWh net        30,038,040
SRMC      197,194,846 6.56484
Fix O&M        14,405,624 0.47958
Capital Cost        48,332,000 1.60903
LRMC      259,932,470 8.65344

SRMC = 6.56484 PHP/kWh (variable O&M + fuel + lubes)

LRMC = 8.65344 PHP/kWh (capital cost + fixed O&M + regulatory + SRMC)

 

Equity Returns: (30% equity, 70% debt)

IRR          = 14.00    % p.a. (target returns)

NPV        = 0.00     ‘000$

PAYBACK = 9.83    years

 

Project Returns: (100% equity, 0% debt)

IRR          = 11.59           % p.a.

NPV        = (1,977,185)  ‘000$ (negative since IRR < 14.00%)

PAYBACK = 7.25           years

——————————————————————————————-

The above runs were based on goal-seek to make equity NPV = 0 (to meet equity IRR target of 14.00% p.a.).

You can perform sensitivity analysis and save the results in a case column (copy paste value).

You can breakdown the tariff ($/kWh) into its capital ($/kW-month) and variable cost recovery ($/kWh) portions.

You can prepare all-in capital cost breakdown showing interest cost during construction and does model the impact of project construction delays.

You can show the evolution of capacity and generation (degradation) during the operating period and show other revenues, expenses and balance sheet accounts as they change over time during operation years.

You can show the income & expense statement.

You can show the cash flow statement.

You can show the balance sheet.

You can show the debt service cover ratio (DSCR) as it computes the cash flow available for debt service.

It also computes the benefits to cost ratio (B/C) of the project.

Finally, it computes the other financial ratios such as:

LIQUIDITY RATIOS

SOLVENCY RATIOS

EFFICIENCY RATIOS

PROFITABILITY RATIOS

MARKET PROSPECT RATIOS

Download the sample file below:

Model Inputs and Results – Fuel Oil Thermal

Download the complete demo model for a fuel oil thermal power plant in PHP and USD currencies are shown below:

ADV Fuel Oil Thermal Model3 – demo5b

ADV Fuel Oil Thermal Model3 (USD) – demo5b

If you have actual data from your OEM and EPC suppliers, kindly share the data with me or simply enter your live data into the above models and see how the results will change immediately before your eyes. Please email me back the updated demo model with your new data so you may share it will all our readers of this blog.

To purchase the PHP and USD models at a discount, click the link below:

Fuel Oil Thermal 300 mw Power Project Finance Model Ver. 3 – in USD and PHP Currency

You may place your order now and avail of a package for the unlocked model and I will give you one-hour free for assistance in putting your input data into the model (via telephone or email or FB messenger).

Your energy technology selection expert.

Email me for more details and how to order off-line:

energydataexpert@gmail.com

Visit our on-line digital store to order on-line

www.energydataexpert.com

www.energytechnologyexpert.com

 

Steam Cycle and Rankin Cycle Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in power generation

Steam Cycle and Rankin Cycle Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed for the steam cycle and Rankin cycle power generation technology using a variable of energy sources and fossil fuels such as  oil thermal (bunker oil) and gas thermal (natural gas). Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Among the oldest and most versatile power generation technology is based on the steam cycle, also called the Rankin cycle, which consists of a heating source to convert a liquid such as water into saturated steam or superheated steam to drive a steam turbine, and recover the spent steam in the condenser to be pre-heated in a steam drum and then converted to steam in a boiler and superheated further in the super heater of the Rankin cycle.

More »

Advanced (ADV) Project Finance Models for Conventional, Fossil, Nuclear and Renewable Energy Power Generation Technologies – Price List and Specs

September 28th, 2014 No Comments   Posted in cost of power generation

Advanced (ADV) Project Finance Models for Conventional, Fossil, Nuclear and Renewable Energy Power Generation Technologies – Price List and Specs (offer up to Sep 30, 2014 only)

Your power generation technology selection expert is pleased to make a final call to all project finance and power plant modelers to purchase the Advanced (ADV) Project Finance Models for Conventional, Fossil, Nuclear and Renewable Energy Power Generation Technologies.

The model consists of the following worksheets/tabs: More »

Why the Philippines is Lacking in Power Supply Always and is Expensive Compared to its Asian Neighbors

September 24th, 2014 No Comments   Posted in cost of power generation

Why the Philippines is Lacking in Power Supply Always and is Expensive Compared to its Asian Neighbors

Following is the outline of my power point presentation on “Why the Philippines is Lacking in Power Supply Always” and  why the Philippines has one of the highest power rate in Asia and the World.

If you need the pdf version, please email me so I could respond to your request.

 “Why the Philippines is Lacking in Power Supply Always”

By: Marcial T. Ocampo

        Energy Technology Selection and Optimization Consultant at

        OMT Energy Enterprises More »

New 2013 Price List of my Project Finance Models & Technical Tool Kits

January 17th, 2013 1 Comment   Posted in financial models

New 2013 Price List of my Project Finance Models & Technical Tool Kits

After the successful sale of my models and tool kits, I am happy to annouce the new price lists of my financial models, optimization tools and power plant emission calculation tool kits.

Order now this Christmass and get a whooping 50% discount on all articles and models. Hurry, this offer ends December 31, 2013. And if you buy two articles or models, the third one will be free! Order now and email me.

More »

Get Your Energy Technology Articles the Easy Way – Shopping Cart

June 19th, 2012 No Comments   Posted in energy technology expert

Get Your Energy Technology Articles the Easy Way – Shopping Cart

You can now order on-line your energy technology articles the easy way – via the Shopping Cart.

Once you have decided to purchase, proceed to order via the shopping cart and pay thru PayPal thru your bank account or your credit card and download immediately the models. More »

Get Your Project Finance Models the Easy Way – Shopping Cart

Get Your Project Finance Models the Easy Way – Shopping Cart

You can now order on-line your project finance models the easy way – via the Shopping Cart.

Once you have decided to purchase, proceed to order via the shopping cart and pay thru PayPal thru your bank account or your credit card and download immediately the models. More »

Shopping Cart for my Power Generation and Fuel Cycle Technology Power Pt Presentation and Articles – new price list

August 13th, 2011 No Comments   Posted in power generation

Shopping Cart for my Power Generation and Fuel Cycle Technology Power Pt Presentation and Articles – new price list

Due to the tremendous interest and response from avid readers to this blog, your energy technology selection and business development expert is now automating the order taking, payment and downloading of its various power generation power pt presentable and articles as well as project finance models.

Here is the new price list for my energy data base, power plant emission, feed-in-tariff, renewable energy resource assessment and project finance models for conventional, renewable and nuclear energy.

If you are investing in energy and power generation projects in the Philippines or any other country, please email me so you could outsource to me the gathering of all energy, oil and power consumption, demand and projections to support the market study of your feasibility studies. More »

New Simplified Calculation Procedure for Levelized Cost of Energy (LCOE) and Feed-in Tariff

July 28th, 2010 3 Comments   Posted in cost of power generation

New Simplified Calculation Procedure for Levelized Cost of Energy (LCOE) and Feed-in Tariff

As part of the on-going technical preparations for the proposed mini-conference on the Mindanao Power Crisis this coming late August or early September 2010 and the main conference on “Energy & Climate Change”, the workshop coordinator, Mr. Marcial T. Ocampo, has prepared the simplified calculation procedure for calculating the levelized cost of energy (LCOE) and levelized selling price (tariff) for conventional and renewable energy resources.

The result of the simplified formulas using the US NREL formula for generation cost and the RP MTO formula for selling price were compared with the results from a full-blown project finance model and the variance between the two methods were minimal in most of the power generation technologies analyzed.

The input data came from the IEPR research summary of 2007 and from internationally published data on power generation technology by noted experts such as Paul Breeze and yours truly, Marcial Ocampo. More »

ENERGY & CLIMATE CHANGE: A Complete Review of Power Generation Technologies and Impact on Climate Change

July 15th, 2010 5 Comments   Posted in energy & climate change

For:    ________________________ (name of suggested speaker/presentor, discussant/reactor, contributor/donor, exhibitor, participant)

From:  Marcial T. Ocampo

former Executive Director, Philippine Council for Industry & Energy Research & Development (PCIERD)

Department of Science & Technology (DoST)

Republic of the Philippines

Subject: Invitation to Conference on Energy & Climate Change as Speaker/Presentor, Discussant/Reactor, Contributor/Donor, Exhibitor, Participant (top management by invitation)

————————————-

Dear Sir/Madam:

In view of the need to provide stakeholders’ input into the development of a new energy strategy of the incoming administration of President Aquino towards sustainable development, I would like to invite you to solicit your interest and participation on the proposed conference on

ENERGY & CLIMATE CHANGE:  A Complete Review of Power Generation Technologies and Impact on Climate Change

Date: tentative September-October 2010

Venue: To be arranged More »

New Best Entrant Project Finance Model with VAT – landfill, diesel, coal, oil, natgas

April 24th, 2010 2 Comments   Posted in financial models

New Best Entrant Project Finance Model with VAT – landfill, diesel, coal, oil, natgas

A new “Best New Entrant” project finance model with value added tax (VAT) has been developed to analyze which of the following technology such as landfill gas to power, diesel engine, coal thermal (pulverized, CFB), oil thermal or natural gas CCGT is the best new entrant providing overall effectiveness in terms of first year tariff and equity returns.

To order, simply proceed to the ENERGY DATA page of this blog and select large scale models, then order via PayPal the desired model.

Alternatively, you may confirm your order via email, then I will email you my local bank details where you may send via wire transfer the payment.

Upon receipt via PayPal or my local bank account, I will then email you two copies of the ordered models.

Regards,

Marcial Ocampo

Energy & Business Development Consultant

More »

Project Finance Model for Determining the “Best New Entrant” Power Generation Technology

January 16th, 2010 1 Comment   Posted in financial models

Project Finance Model for Determining the “Best New Entrant” Power Generation Technology

In proposing a new power plant project to address a supply deficiency problem in a given grid, it is important for the project proponent and developer to demonstrate to the investors as well as to the regulator and end-users that the proposed power generation technology solution is the “best new entrant” that will address the power deficiency and provide the cheapest, reliable and stable electricity service. More »

Available Project Finance Models with CDM and Renewable Energy Law Incentives

January 15th, 2010 No Comments   Posted in financial models

Available Project Finance Models with CDM and Renewable Energy Law Incentives

I just finished polishing all my project finance models for the following power generation technologies and are now available for actual runs by project developers, researchers and individuals doing business development.  Using the models below will allow user to determine as quickly as possible the “best new entrant” technology applicable to a particular location given the fuel and energy resource available and the electricity tariff prevailing in the area. More »

How to Optimize Power Plant Design and Configuration (technology, capacity, efficiency, location)

January 11th, 2010 2 Comments   Posted in financial models

How to Optimize Power Plant Design and Configuration (technology, capacity, efficiency, location) – see download file for input data

Optimizing the overall project concept during the plant feasibility study and detailed engineering study is a common problem faced by project developers and EPC contractors.  The question commonly asked by project owners from project developers and designers are:

(1) What engine/manufacturer should be considered (e.g. Siemens, Westinghouse, General Electric, Mitsubishi, Alstom, etc)? More »

Biomass, Coal and Oil Thermal, Diesel and CCGT Levelized Tariff, Levelized Cost and Financial Model

November 29th, 2009 2 Comments   Posted in financial models

Biomass, Coal and Oil Thermal, Diesel and CCGT Levelized Tariff, Levelized Cost and Financial Model

The following is a snippet of my state-of-the-art project finance model for calculating levelized tariff, levelized cost of energy, and financial model (generation, fuel requirement, income statement, cash flow statement, balance sheet and financial ratios). More »

Large-Scale Project Finance Models

Large-Scale Project Finance Models:

  1. Oil Thermal Power Plant – 2,000 US$

  2. Pulverized Thermal Power Plant – 4,000 US$

  3. Advance Coal Thermal Power Plant – 6,000 US$

  4. Geothermal Power Plant – 8,000 US$

  5. Simple Gas Turbine Power Plant – 9,000 US$

  6. Combined Cycle Gas Turbine Power Plant – 10,000 US$

  7. Energy Storage Power Plant – 12,000 US$*
  8. Solar Thermal Power Plant – 14,000 US$*
  9. Fuel Cells Power Plant – 16,000 US$*
  10. Ocean Thermal Power Plant – 18,000 US$*
  11. Ocean Wave Power Plant – 20,000 US$*
  12. Tidal Power Plant – 22,000 US$*
  13. Nuclear Power Plant – 30,000 US$*

*Please inquire about payment options directly to me.


Contents:

1) Input (Assumption) Sheet

2) Report (Summary) Sheet

3) Project Cost Sheet (equipment cost, ocean freight, insurance, taxes & duties, brokerage & local shipping, erection & installation, land & right-of-way, project development & contract management, initial stocks & inventories, manpower mobilization & training, working capital, interest during construction, other capitalized expenses)

4) Construction Sheet (construction schedule, equity/loan drawdown, interest during construction)

5) Model Sheet (escalation of items, starting costs, capacity & degradation, heat rate & efficiency degradation, maintenance & overhaul scheduel, available hours, gross generation, plant use & net generation, transmission/distribution line constraints & losses, net electricity sales, revenue items, expense items, income statement, balance sheet, cash flow statement, project & equity IRR, project & equity payback, debt service cover ratio)

6) Depreciation Sheet (evolution of balance sheet accounts, working capital)

7) Loan Amortization Table (interest & principal repayment)

Oil Thermal

The file (1.21 MB) will cover the following topics:

Oil Thermal Energy

Rock oil” was discovered in Pennsylvania in 1859 by a man drilling for water

Crude oil accounts for 40% of energy use worldwide: 3% of power comes from oil, 16% from natural gas.

High energy density, 43 MJ/kg (18,600 Btu/lb), and relatively clean burning, versatile.

Topics – Oil Thermal

  • Oil & Gas Resource: Origin, Reserves, Extraction Rate, Life Time
  • Properties of Liquid Fuels, Fuel Oils and Natural Gas
  • Basic Principle of Oil-Gas Thermal Plant
  • Ideal and Modified Rankine (Steam) Cycle Efficiency, Heat Rates
  • Oil-Gas Burners (Circular, S-type, Reduced NOx)
  • Reducing NOx Emissions (FGR, LEA, 2-stage air, Re-burning)
  • Emissions from Power Plants
  • Pollution Control Technologies used in Power Generation
  • Cost of Power Generation (Capital, O&M, Levelized)
  • Oil-Thermal and Diesel Plants in the Philippines
  • Environmental Impact & Risks

Price: 42 USD