How to use the advanced (regulator) solar CSP power plant project finance model

July 12th, 2017 No Comments   Posted in financial models

How to use the advanced (regulator) solar CSP (concentrated solar power) plant project finance model

(Lord God, bless my website and my readers that they will contribute to my charity fund for the jobless, sickly, needy, homeless, hungry and destitute. God Bless you all my friends for reading my blog and ordering my project finance models. Amen.)

Finding an easy-to-use project finance model for a solar CSP power plant with built-in data is sometimes difficult as some models don’t have the sophistication of a regulator template model as well as the ease of using the model and viewing immediately the results of a sensitivity change in the inputs to the model.

This is now made easy because the Input & Assumptions worksheet (tab) has combined all the input and output information in a single worksheet and placing the reports in other worksheets such as Tariff Breakdown, Construction Period, Operating Period, Financial Reports and Levelized Tariff.

Following is a sample case study on a solar CSP power plant. From the preliminary design and cost estimates, the top management would want to know if the business idea of going into solar CSP power development, construction and operation is worth the effort – is it feasible and what are the economic and financial returns for risking capital.

Here are the inputs and outputs of the advanced template model from OMT ENERGY ENTERPRISES:


Here are the summary of inputs:

all-in capital cost (overnight cost) = 5,881 $/kW (target cost)

EPC cost portion = 4,526 $/kW (computed by model)

refurbishment cost = 5% of EPC cost on the 10th year (overhaul)

fixed O&M cost = 24.69 $/kW/year (target cost) = 2,144.03 ‘000$/unit/year (computed by goal seek)

variable O&M cost = 2.00 $/MWh (target cost) = 15.69 ‘000$/MW/year (computed by goal seek)

general admin cost = 100.00 ‘000$/year (target cost)


Thermal power plant inputs: (not applicable to solar CSP)

Gross heating value of solar CSP fuel = 5,198 Btu/lb

Plant heat rate = 10,663 Btu/kWh (32.00% thermal efficiency)

Cost of biomass fuel = 1.299 PhP/kg = 1,299 PhP/MT


Lube oil consumption rate = 5.4 gram/kWh

Density of lube oil = 0.980 kg/Liter

Cost of lube oil = 200.00 PhP/Liter


capacity = 200.00 MW/unit x 2 units = 400.00 MW


Plant Availability Factor, %                                    96.67% (computed by goal seek)

Load Factor, %                                                      95.00% (assumed)

Allowance for losses & own use, %                       2.00% (assumed)

Net Capacity Factor after losses & own use, %    90.00% (target net capacity factor)

Degradation rate, %                                               0.2%


construction period = 24 months (start 2016)

operating period = 25 years (start 2018)


Capital cost estimation assumptions and % local cost (LC):

Power plant footprint (ha)                                   10.00

Cost of purchased land (PhP/sqm)                    15.00 (no land lease)

Land cost, $000 $29.82 100.0%
Equipment Cost ex BOP, Transport ($000/MW) $3,209.89 15.0%
Insurance, Ocean Freight, Local Transport, % of Equipment Cost 10.0% 100.0%
Balance of Plant (BOP), % of Equipment Cost 31.0% 50.0%
Transmission Line Distance (km) 15.00
T/L Cost per km, 69 kV ($000/km) $84.00 100.0%
Switchyard & Transformers ($000) $145.00 100.0%
Access Roads ($000/km) $44.19 100.0%
Distance of Access Road (km) 15.00
Dev’t & Other Costs (land, permits, etc) (% of EPC) 2.0% 50.0%
VAT on importation (70% recoverable) 12% 100.0%
Customs Duty 0% 100.0%
Initial Working Capital (% of EPC) 1.0% 100.0%
Contingency (% of Total Cost) 7.5% 36.5%


Capital cost breakdown (‘000$): (computed values)

Uses of Fund:

Uses of Fund:
   Land Cost $30
   EPC (Equipment, Balance of Plant, Transport) $1,810,379
   Transmission Line Interconnection Facility $1,260
   Sub-Station Facility $145
   Development & Other Costs (Civil Works, Customs Duty) $36,870
   Construction Contingency $138,649
   Value Added Tax $165,337
   Financing Costs $181,578
   Initial Working Capital $18,104
Total Uses of Fund – $000 $2,352,351
                                 – PhP 000 118,316,450
Sources of Fund:
   Debt $1,646,646
   Equity $705,705
Total Sources of Fund $2,352,351


Local and Foreign Cost Components (from individual cost item):

Local Capital = 36.5 %

Foreign Capital = 63.5 %


Balance Sheet Accounts:

Receivables = 30 days of revenue

Payables    = 30 days of expenses

Inventory    = 60 days of consumables


Imported Capital Equipment:

Customs duty = 0%

Value added tax (VAT) = 12%

VAT recovery = 70% on 5th year of operation


Type of input / output VAT = 0 (none)

Type of incentives = 2 (BOI incentives)


Tax Assumptions:

Income Tax Holiday (yrs) 7
Income Tax Rate % (after ITH) 10%
Property tax (from COD) 1.5%
Property tax valuation rate (% of NBV) 80%
Local Business Tax 1.0%
Government Share (from COD) 1.0%
ER 1-94 Contribution (PhP/kWh) 0.01
Withholding Tax on Interest (Foreign Currency) – WHT 10%
Gross Receipts Tax on Interest (Local Currency) – GRT 5%
Documentary Stamps Tax (DST) 0.5%
PEZA Incentives (% of gross income) – 0% / 5% 0%
Royalty 0%


Capital Structure:

Equity Share = 30% at 14.00% p.a. target equity returns (IRR)

Debt Share = 70% (36.5% local, 63.5% foreign)


Debt Terms:

Local & Foreign Upfront & Financing Fees 2.00%
Local & Foreign Commitment Fees 0.50%
Local All-in Interest Rate excluding tax 10.00%
Local Debt Payment Period (from end of GP) (yrs) 10
Foreign All-in Interest Rate excluding tax 8.00%
Foreign Debt Payment Period (from end of GP) (yrs) 10
Local and Foreign Grace Period from COD (mos) 6
Local and Foreign debt Service Reserve (mos) 6


Foreign Exchange Rate:

Base Foreign Exchange Rate (PhP/US$) – 2013            48.0000 (construction)

Forward Fixed Exchange Rate (PhP/US$) – 2014           50.2971 (operating)


Escalation (CPI):

Annual Local CPI – for OPEX      0.0%            4.0%     for CAPEX (to model construction delay)

Annual US CPI – for OPEX           0.0%            2.0%     for CAPEX (to model construction delay)


Weighted Average Cost of Capital:

WACC pre-tax       10.38%

WACC after-tax     9.34%

WACC                   10.30%


Results of Financial Analysis:


First year tariff (Feed-in-Tariff) = 5.51450 P/kWh = 0.10964 USD/kWh

(at zero equity NPV)


Short run marginal cost (SRMC) and Long run marginal cost (LRMC)

Item PhP 000 PhP/kWh
Fuel                      – 0.000
Lubes              86,530 0.001
Var O&M          7,889,902 0.103
Total          7,976,432 0.104
MWh net        76,947,840
SRMC          7,976,432 0.104
Fix O&M        35,245,717 0.458
Capital Cost      381,107,017 4.953
LRMC      424,329,167 5.515


Equity Returns: (30% equity, 70% debt)

IRR          = 14.00    % p.a. (target returns)

NPV        = 0.00    ‘000$

PAYBACK = 10.28    years


Project Returns: (100% equity, 0% debt)

IRR          = 11.91        % p.a.

NPV        = (13,405,736)  ‘000$ (negative since IRR < 14.00%)

PAYBACK = 7.22        years


The above runs were based on goal-seek to make equity NPV = 0 (to meet equity IRR target of 14.00% p.a.).

You can perform sensitivity analysis and save the results in a case column (copy paste value).

You can breakdown the tariff ($/kWh) into its capital ($/kW-month) and variable cost recovery ($/kWh) portions.

You can prepare a all-in capital cost breakdown showing interest cost during construction and does model the impact of project construction delays.

You can show the evolution of capacity and generation (degradation) during the operating period and show other revenues, expenses and balance sheet accounts as they change over time during operation years.

You can show the income & expense statement.

You can show the cash flow statement.

You can show the balance sheet.

You can show the debt service cover ratio (DSCR) as it computes the cash flow available for debt service.

It also computes the benefits to cost ratio (B/C) of the project.

Finally, it computes the other financial ratios such as:







Download the sample file below:

Model Inputs and Results – Solar CSP


Download the complete demo model for a solar CSP power plant in PHP and USD currencies are shown below:

ADV Concentrating Solar Power (CSP) Model3 – demo5b

ADV Concentrating Solar Power (CSP) Model3 (USD) – demo5b

If you have actual data from your OEM and EPC suppliers, kindly share the data with me or simply enter your live data into the above models and see how the results will change immediately before your eyes. Please email me back the updated demo model with your new data so you may share it will all our readers of this blog.


To purchase the PHP and USD models at a discount (only USD400 for two models), click the link below:

CSP 400 mw Project Finance Model Ver. 3 – in USD and PHP Currency


You may place your order now and avail of a package for the unlocked model with free guidance on using it. The list price of the solar CSP model is USD1,400 and I will give you one-hour free for assistance in putting your input data into the model (via telephone or email or FB messenger).

Your energy technology selection expert.

Email me for more details and how to order off-line:

Visit our on-line digital store to order on-line


Solar Photo Voltaic (PV) Project Finance Model Template (Financials Tab) – free demo

April 17th, 2016 No Comments   Posted in solar PV power

Solar Photo Voltaic (PV) Project Finance Model Template (Financials Tab) – free demo

This is the latest project finance model template (financials tab or worksheet) that your energy technology selection expert has developed solar PV energy. Familiarize with the template and if interested, get the full unlocked version for your immediate use. I can also provide data input service or customize further the model.

Solar Photo Voltaic (PV) farms are the present darling in the RE industry. It is the fastest RE technology that can be built in the shortest possible time, and with declining cost of producing and maintaining solar PV panels, a large number of project developers have ventured into solar.

More »

Solar PV Power Model – avail of 50% discount now

August 5th, 2011 1 Comment   Posted in renewable energy, Uncategorized

Solar PV Power Model- avail of 50% discount now

As promised in my previous blog, I will now deal with the cost of renewable energy technologies (feed-in-tariff). I will be making a special offer for the purchase of the following RE technologies:

1) Biomass Power Model (Direct Combustion, Cogeneration, Gasification of MSW)

2) Mini-Hydro Power Model

3) Ocean Thermal Energy Conversion (OTEC) Model

4) Solar PV Power Model

5) Wind Power Model

6) Renewable Energy Resource Assessment Model (Wind, Solar PV, Mini-Hydro) – Converts wind speed measurement, solar radiation and rainfall data into hourly power output, annual power generation and annual capacity factor) More »