The Ultimate Solution to High Electricity Costs in the Philippines

August 22nd, 2016 No Comments   Posted in cost of power generation

The Ultimate Solution to High Electricity Costs in the Philippines

Further to my previous blog on How to Reduce Electricity Costs, the following discussion will present the Ultimate Solution to reducing Philippine electricity costs – the highest rate in Asia.

The yardstick for comparing the various technologies of unequal lifetimes and capacity is the levelized cost of energy (LCOE) also called the long run marginal cost (LRMC) which is the sum of annualized capital cost, fixed O&M, variable O&M and fuel/lube costs. On the other hand, the short run marginal cost (SRMC) is the sum of all variable O&M and fuel/lube costs. The LRMC is used in long-term least cost capacity expansion planning by the DOE while the SRMC is used in short-term optimal dispatch such as the WESM hourly dispatch by the market operator (PEMC).

The LCOE or LRMC and SRMC may be computed using a simple cost formula developed by US NREL or by yours truly (RP MTO price formula – the grossed-up US NREL cost formula that considers depreciation and income tax rate). Download this file for data and formulas:

Cost of power generation technologies

However, in this presentation below, I used the more accurate project finance model similar to the NREB project finance model template approved by the ERC to calculate the first year tariff, LRMC, SRMC, equity and project IRR, NPV and PAYBACK, and DSCR (min, ave, max).

More »

Why Philippine Electricity Reserves are always not adequate?

August 5th, 2016 No Comments   Posted in optimal load dispatch

Why Philippine Electricity Reserves are always not adequate?

This is a question perennially asked by ordinary citizens, businessmen, investors, and now legislators. It is happening as if no one is minding the store.

Well, I have some ideas that will open our eyes on the real score.

We lack power reserves, the difference between peak demand and dependable capacity. The key word is dependable capacity, and not installed capacity.

Adequate power reserves are needed so that in the event that the largest single unit in the grid goes off-line, these back-up power reserves kick in with sufficient ramp-up rate to prop-up the supply immediately so that the grid remains stable and does not go into load-dropping mode to equalize supply with demand. More »

Power Generation and Fuel Cycle Technologies – a mini-lecture series with power point presentation and excel project finance models

March 19th, 2016 No Comments   Posted in power generation

Power Generation and Fuel Cycle Technologies – a mini-lecture series with power point presentation and excel project finance models

Your energy technology selection expert is beginning a lecture series on power generation and fuel cycle technologies. This will involve a discussion on the principles of the technology, its history, capital and operating costs, benefits and risks.


1) To provide the participants a basic understanding of the following commercially available:

– fuel cycle technologies

– power generation technologies, and

– energy storage technologies

2) To know the basic principles, costs, environmental impact, risks and applicability of each of these technologies, and

3) To present the technology roadmap of each of these technologies to guide us in the near term (next 20 years – up to 2020) and in the long term (next 50 years – up to 2050)

The Past

o Introduction – what-is-electricity

o How is Electricity Generated – generation-of-electricity

o History of Power Generation – history-of-power-generation

o The Complete Electric Power System (base load, intermediate & peaking loads)

The Present

o Commercially Available Fuel Technologies, Power Generation Technologies, and Energy Storage Technologies –


o Primary Energy Sources – primary-energy-sources

o Fuel Properties – fuel-properties

o For the commercially available technologies:

– Basic Principles

– Costs

– Environmental Impact

– Associated Risks

– Applicability


The Future

o The Technology Roadmap: Vision, Portfolio, Approach, Global Drivers of Change, Cost of Not Yet Commercially Available Tech –


o The Near Term Fuel, Power Generation, and Energy Storage Technologies (up to 2020) –


o The Long Fuel, Power Generation, and Energy Storage Technologies (up to 2050) –



The project finance models of the power generation technology selection expert are based on one model template; hence, the results are unique for the technology’s capital and operating costs, fuel properties and costs, energy conversion efficiency or heat rate, and energy resource availability and reliability.

The financial models are denominated in Philippine Pesos (PhP 47.00 = USD). You can easily convert to your own local currency by changing the base and forward fixed exchange rate (e.g. XXX 100.00 = USD, USD 1.00 = USD) and do a global replacement of all PhP with XXX currency.


Sample Project Finance Model

Here is a sample project finance model for a biomass thermal power plant that can be customized for your specific need: (Advanced regulator model)


The same model above is also presented in just one worksheet (tab) so you would be able to understand better the structure of a project finance model: (OMT Energy Enterprises model)


A sample non-thermal power plant (no fuel GHV and no fuel cost) can also be downloaded:


A sample liquid fossil thermal power plant (with fuel GHV, fuel density and fuel cost) is also available:


Email me if you need customization:

You may order on-line any project finance model of any renewable, conventional, fossil, nuclear, combined heat and power, and energy storage power generation technologies by visiting this website:

Or please visit this blog for any power generation technology article:


The energy technology expert and financial modeling expert




adv-biomass-cogeneration-model3-demo5 – process heat (steam) and power

adv-biomass-direct-combustion-model3-demo5 – bagasse, rice husk or wood waste fired boiler steam turbine generator

adv-biomass-gasification-model3-demo5 – gasification (thermal conversion in high temperature without oxygen or air, pyrolysis)

adv-biomass-igcc-model3-demo5 – integrated gasification combined cycle (IGCC) technology

adv-biomass-wte-model3-demo5 – waste-to-energy (WTE) technology for municipal solid waste (MSW) disposal and treatment

adv-biomass-wte-model3-pyrolysis-demo5 – waste-to-energy (WTE) pyrolysis technology

adv-mini-hydro-model3-demo5 – run-of-river (mini-hydro) power plant

adv-concentrating-solar-power-csp-model3-demo5 – concentrating solar power (CSP) 400 MW

adv-solar-pv-1-mw-model3-demo5 – solar PV technology 1 MW Chinese

adv-solar-pv-25-mw-model3-demo5 – solar PV technology 25 MW European and Non-Chinese (Korean, Japanese, US)

adv-wind-onshore-model3-demo5 – includes 81 wind turbine power curves from onshore WTG manufacturers

adv-wind-offshore-model3-demo5 – includes 81 wind turbine power curves from  offshore WTG manufacturers

adv-ocean-thermal-model3_10-mw-demo5 – ocean thermal energy conversion (OTEC) technology 10 MW

adv-ocean-thermal-model3_50-mw-demo5 – ocean thermal energy conversion (OTEC) technology 50 MW


adv-geo-thermal-model3-demo5 – geothermal power plant  100 MW

adv-large-hydro-model3-demo5 – large hydro power plant 500 MW

adv-coal-fired-cfb-thermal-model3_50-mw-demo5 – subcritical circulating fluidized bed (CFB) technology 50 MW

adv-coal-fired-cfb-thermal-model3_135-mw-demo5 – subcritical circulating fluidized bed (CFB) technology 135 MW

adv-coal-fired-pc-subcritical-thermal-model3-demo5 – subcritical pulverized coal (PC) technology 400 MW

adv-coal-fired-pc-supercritical-thermal-model3-demo5 – supercritical pulverized coal (PC) technology 500 MW

adv-coal-fired-pc-ultrasupercritical-thermal-model3-demo5 – ultrasupercritical pulverized coal (PC) technology 650 MW

adv-diesel-genset-model3-demo5 – diesel-fueled genset (compression ignition engine) technology 50 MW

adv-fuel-oil-genset-model3-demo5 – fuel oil (bunker oil) fired genset (compression ignition engine) technology 100 MW

adv-fuel-oil-thermal-model3-demo5 – fuel oil (bunker oil) fired oil thermal technology 600 MW

adv-natgas-combined-cycle-model3-demo5 – natural gas combined cycle gas turbine (CCGT) 500 MW

adv-natgas-simple-cycle-model3-demo5 – natural gas simple cycle (open cycle) gas turbine (OCGT) 70 MW

adv-natgas-thermal-model3-demo5 – natural gas thermal 200 MW

adv-petcoke-fired-pc-subcritical-thermal-model3-demo5 – petroleum coke (petcoke) fired subcritical thermal 220 MW

adv-nuclear-phwr-model3-demo5 – nuclear (uranium) pressurized heavy water reactor (PHWR) technology 1330 MW


adv-coal-fired-cfb-thermal-model3_50-mw-chp-demo5 – combined heat and power (CHP)  circulating fluidized bed (CFB) technology 50 MW

adv-diesel-genset-and-waste-heat-boiler-model3-demo5 – diesel genset (diesel, gas oil) and waste heat recovery boiler 3 MW

adv-fuel-oil-genset-and-waste-heat-boiler-model3-demo5 – fuel oil (bunker) genset and waste heat recovery boiler 3 MW

adv-gasoline-genset-and-waste-heat-boiler-model3-demo5 – gasoline genset (gasoline, land fill gas) and waste heat recovery boiler 3 MW

adv-propane-simple-cycle-and-waste-heat-boiler-model3-demo5 – simple cycle GT (propane) and waste heat recovery boiler 3 MW (e.g. Capstone)

adv-simple-cycle-and-waste-heat-boiler-model3-demo5 – simple cycle GT (natural gas, land fill gas, LPG) and waste heat recovery boiler 3 MW (e.g. Capstone)


Should you need the actual models (not demo) that could be revised for your own needs (additional revenue streams, additional expense accounts, additional balance sheet accounts, etc.), you may:

Email me:

Visit me:




How to reduce Philippine Electricity Cost – the most expensive power in Asia – to improve its competitiveness

March 17th, 2016 No Comments   Posted in cost of power generation

How to reduce Philippine Electricity Cost – the most expensive power in Asia – to improve its competitiveness

On various occasions and public debates, there is a unified concern to lower Philippine electricity cost in order to improve the country’s competitiveness in order to attain inclusive economic growth.

However, reducing power costs, such as putting up more cheaper power plants like coal-fired power plants instead of expensive petroleum-based power plants and intermittent renewable energy power technologies have to be balanced with the need to reduce greenhouse gas (CO2), sulfur (SO2), NOX and particulate emission to mitigate climate change and air pollution. More »

Integrated Energy Planning – the path towards CLEAN ENERGY

March 4th, 2016 No Comments   Posted in Clean Energy

Integrated Energy Planning – the path towards CLEAN ENERGY

Recently, Mr. Bill Gates renewed mankind’s yearning for CLEAN ENERGY as the way forward towards sustainable and inclusive growth for all peoples of mother earth.

But this would require technical effort, economical approach and environmentally sound action plan that could only be developed through a scientific-based “integrated energy planning”. For such planning to gain wide-spread reach, technical, economic, financial and optimization tools must be within reach by energy and development planners, be it at the level of a community such as off-grid remote areas, river-basin based development regions, island groups, countries, and continents with integrated energy and power networks. More »

Reaction to Mr. Bill Gates’ post on CLEAN ENERGY

February 25th, 2016 No Comments   Posted in Clean Energy

Reaction to Mr. Bill Gates’ post on CLEAN ENERGY

Hi Mr. Bill Gates:

Thanks for keeping the focus on CLEAN ENERGY, and how best to achieve an economic and environmental balance for its future use and mankind’s benefit.

This would require, I believe, easy access to a set of tools and processes that will automate and institutionalize the technical and economic analysis of renewable energy (RE) projects and non-RE projects to determine feasibility, provide inputs to both short-term and long-term optimal dispatch and capacity expansion planning, in order to achieve optimum energy and power generation mix, least cost of energy, lower fuel consumption, reduced GHG emission, sulfur emission and global warming impact of the power industry. More »

Solving the Mindanao Power Crisis – Use Economic Load Dispatch LP Model

April 16th, 2012 No Comments   Posted in power generation

Solving the Mindanao Power Crisis – Use Economic Load Dispatch LP Model


In the same manner that the price of oil can be calculated by valuing each step in the supply chain (see my blog on oil pricing) or by doing incremental pricing (see also my blog), we can estimate the price of power from each power generation technology or existing power source from the cost of the investment (as against replacement cost), capacity (installed and dependable), plant heat rate (thermal plants like biomass, diesel, coal, geothermal, natural gas) or efficiency (for non-thermal plants like hydro, mini-hydro, wind, solar), delivered cost of fuel (biomass, oil, coal, geothermal steam, natural gas), spare parts replacement cost, operating & maintenance cost, regulatory costs and other costs). More »